Predensification and compression are unit operations imperative to the manufacture of tablets and capsules. Such stress-inducing steps can cause destabilization of solid dispersions which can alter their molecular arrangement and ultimately affect dissolution rate and bioavailability. In this study, itraconazole-Soluplus solid dispersions with 50% (w/w) drug loading prepared by hot-melt extrusion (HME) were investigated. Compression was performed at both pharmaceutically relevant and extreme compression pressures and dwell times. The starting materials, powder, and compressed solid dispersions were analyzed using modulated differential scanning calorimetry (MDSC), X-ray diffraction (XRD), small- and wide-angle X-ray scattering (SWAXS), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), and broadband dielectric spectroscopy (BDS). MDSC analysis revealed that compression promotes phase separation of solid dispersions as indicated by an increase in glass transition width, occurrence of a peak in the nonreversing heat flow signal, and an increase in the net heat of fusion indicating crystallinity in the systems. SWAXS analysis ruled out the presence of mesophases. BDS measurements elucidated an increase in the Soluplus-rich regions of the solid dispersion upon compression. FTIR indicated changes in the spatiotemporal architecture of the solid dispersions mediated via disruption in hydrogen bonding and ultimately altered dynamics. These changes can have significant consequences on the final stability and performance of the solid dispersions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.molpharmaceut.6b00046 | DOI Listing |
Int J Biol Macromol
December 2024
Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India. Electronic address:
This study presents an eco-friendly, cost-effective approach for synthesizing highly efficient nanocatalysts with the help of organic waste. Iron nanoparticles (INPs) were synthesized from aqueous extracts of potato, potato peel, and potato leaf and were evaluated for their photocatalytic efficiency for the degradation of methylene blue dye. X-ray Diffraction (XRD) confirmed FeO nanoparticles cubic crystal structure with the smallest crystallite size (9.
View Article and Find Full Text PDFSci Rep
December 2024
Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, 34110, Qatar.
This study aims to modify raw zeolite with metal oxide nanocomposites to remove nickel (Ni) ions from synthetic wastewater. Novel zeolite-doped magnesium oxide (MgO), iron oxide (FeO), and zinc oxide (ZnO) nanocomposites were synthesized by hydrothermal-calcination methods. The novel zeolite-doped metal oxide nanocomposites were used as adsorbents to remove Ni (II) ions from synthetic wastewater.
View Article and Find Full Text PDFMar Pollut Bull
December 2024
Universidade Federal de Pernambuco, Departamento de Química Fundamental, Av. Jornalista Aníbal Fernandes, s/n, Cidade Universitária, 50740-560 Recife, PE, Brazil. Electronic address:
In August 2019, Brazil experienced its largest large oil spill, which impacted extensive areas and significantly affected the northeastern region, particularly Pernambuco. Polycyclic aromatic hydrocarbons (PAHs), major oil components, are critical for assessing fish contamination risks. This study presents two sample pretreatment methods for fish samples - ultrasound-enhanced air-assisted liquid-liquid microextraction (UE-AA-LLME) for low molar mass PAHs, and matrix solid-phase dispersion for high molar mass PAHs - followed by a Gas-Chromatography coupled to Mass Spectrometry (GC-MS) detection.
View Article and Find Full Text PDFGels
December 2024
Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China.
This paper investigates the flow performance and mechanical properties of underground gelled filling materials made from potash mine tailings, using lime as a gel. It demonstrates the feasibility of using lime as a gel, potash mine tailings as aggregate, and replacing water with potash mine tailings to create filling materials that meet design requirements for flow and compressive strength. The role of lime in the hardening process is explored through X-ray diffraction, scanning electron microscopy with energy-dispersive X-ray spectroscopy, thermogravimetric analysis, and infrared analysis.
View Article and Find Full Text PDFGels
December 2024
College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
In the oil dispersion of chitosan, the formation of a capillary bridge was triggered by adding a small amount of water to obtain an oleogel. With this method, the types of liquid oil and the ratio of oil/chitosan/water were explored to achieve an optimal oleogel. MCT performed best, followed by soybean oil, which was chosen for its edibility and cost.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!