Transcription factor (TF) binding site prediction remains a challenge in gene regulatory research due to degeneracy and potential variability in binding sites in the genome. Dozens of algorithms designed to learn binding models (motifs) have generated many motifs available in research papers with a subset making it to databases like JASPAR, UniPROBE and Transfac. The presence of many versions of motifs from the various databases for a single TF and the lack of a standardized assessment technique makes it difficult for biologists to make an appropriate choice of binding model and for algorithm developers to benchmark, test and improve on their models. In this study, we review and evaluate the approaches in use, highlight differences and demonstrate the difficulty of defining a standardized motif assessment approach. We review scoring functions, motif length, test data and the type of performance metrics used in prior studies as some of the factors that influence the outcome of a motif assessment. We show that the scoring functions and statistics used in motif assessment influence ranking of motifs in a TF-specific manner. We also show that TF binding specificity can vary by source of genomic binding data. We also demonstrate that information content of a motif is not in isolation a measure of motif quality but is influenced by TF binding behaviour. We conclude that there is a need for an easy-to-use tool that presents all available evidence for a comparative analysis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4821295 | PMC |
http://dx.doi.org/10.12688/f1000research.7408.2 | DOI Listing |
Int J Mol Sci
December 2024
2nd Department of Obstetric and Ginecology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400610 Cluj-Napoca, Romania.
Endometriosis, a chronic hormone-dependent condition affecting 10% of women globally, impacts pelvic organs and occasionally distant sites, causing pain, infertility, and sexual dysfunction. Biomarkers such as IL-8, IL-10, and BDNF influence inflammation, nerve sensitization, and pain. This study investigates their relationship with sexual quality of life, focusing on dyspareunia and related dysfunctions, as assessed using the Female Sexual Function Index (FSFI).
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China.
Chaperone-mediated autophagy (CMA) is a selective autophagic pathway responsible for degrading cytoplasmic proteins within lysosomes. Monitoring CMA flux is essential for understanding its functions and molecular mechanisms but remains technically complex and challenging. In this study, we developed a pH-resistant probe, KFERQ-Gamillus, by screening various green fluorescent proteins.
View Article and Find Full Text PDFMolecules
December 2024
Department of Chemistry and Life Science, Kogakuin University, Tokyo 192-0015, Japan.
YKL-40 is structurally similar to chitotriosidase (CHIT1), an active chitinase, but it lacks chitin-degrading activity while retaining chitin-binding capability. Elevated YKL-40 levels are associated with inflammatory diseases and cancers, making it a valuable biomarker. We previously reported that the W69T substitution in YKL-40 significantly reduces its chitin-binding affinity, identifying W69 as a crucial binding site.
View Article and Find Full Text PDFSci Rep
January 2025
Discovery3 Team, Department of Research and Early Development, GC Biopharma, 93, Ihyeon-ro 30Beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do, South Korea.
Immune-mediated thrombotic thrombocytopenic purpura (iTTP) is a rare and life-threatening blood disorder characterized by the formation of blood clots in small blood vessels. It is caused by antibodies targeting the A disintegrin and metalloprotease with thrombospondin type 1 repeats, member 13 (ADAMTS13), which plays a role in cleaving von Willebrand factor. Most patients with iTTP have autoantibodies against specific domains of the ADAMTS13 protein, particularly the cysteine-rich and spacer domains.
View Article and Find Full Text PDFAnn Neurol
January 2025
Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!