Background And Objectives: During past decades Hansenula polymorpha has attracted global attention for the expression of recombinant proteins due to its high growth rate, minimal nutritional porequirements and use of methanol as a low cost inducer.

Materials And Methods: The corresponding nucleotide sequences for the expression of heterologous genes in Hansenula poylmorpha were extracted and assembled in an E. coli vector. The constructed expression cassette included formate dehydrogenase promoter (pFMD), a secretory signal sequence, a multiple cloning site (MCS) and methanol oxidase (MOX) terminator. Zeocin resistance gene fragment and complete cDNA encoding granulocyte colony stimulating factor (GCSF) were cloned downstream of the expression cassette in-frame with signal sequence. Restriction mapping and sequence analysis confirmed the correct cloning procedures. Final vector was transformed into Hansenula and recombinant host was induced for the expression of GCSF protein by adding methanol. SDS-PAGE and immuno-blotting were performed to confirm the identity of r-GCSF.

Results: The expression cassette containing gcsf gene (615bp) and zeocin resistance marker (sh-ble, 1200bp) was prepared and successfully transformed into competent Hansenula polymorpha cells via electroporation. Zeocin resistant colonies were selected and GCSF expression was induced in recombinant Hansenula transformants using 0.5% methanol and an approximately 19kDa protein was observed on SDS-PAGE. Western blot analysis using serum isolated from GCSF-treated rabbit confirmed the identity of the protein.

Conclusions: Molecular studies confirmed the designed expression cassette containing gcsf gene along with pFMD and signal sequence. The expressed 19kDa protein also confirmed the ability of designed vector in expressing heterologous genes in Hansenula cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4833737PMC

Publication Analysis

Top Keywords

expression cassette
16
hansenula polymorpha
12
signal sequence
12
expression
9
granulocyte colony
8
colony stimulating
8
stimulating factor
8
factor gcsf
8
heterologous genes
8
genes hansenula
8

Similar Publications

Enhanced production of recombinant calf chymosin in Kluyveromyces lactis via CRISPR-Cas9 engineering.

Bioresour Technol

January 2025

State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Engineering Research Center for Bio-enzyme Catalysis, Environmental Microbial Technology Center of Hubei Province, School of Life Sciences, Hubei University, Wuhan 430062, PR China. Electronic address:

As an important industrial enzyme, chymosin has been widely used in cheese manufacturing. Fermentation with Kluyveromyces lactis has allowed recombinant chymosin production to fit the growing global demand for cheese consumption; yet improvements can be made to allow for stable and larger-scale production. In this work, various chymosin producing (CP) strains were constructed via targeted chromosomal integration of various copies of a prochymosin expression cassette (PEC) using a CRISPR-Cas9 platform optimized for K.

View Article and Find Full Text PDF

A promising future for breast cancer therapy with hydroxamic acid-based histone deacetylase inhibitors.

Bioorg Chem

January 2025

Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India. Electronic address:

Histone deacetylases (HDACs) play a critical role in chromatin remodelling and modulating the activity of various histone proteins. Aberrant HDAC functions has been related to the progression of breast cancer (BC), making HDAC inhibitors (HDACi) promising small-molecule therapeutics for its treatment. Hydroxamic acid (HA) is a significant pharmacophore due to its strong metal-chelating ability, HDAC inhibition properties, MMP inhibition abilities, and more.

View Article and Find Full Text PDF

Revisiting ABC Transporters and Their Clinical Significance in Glioblastoma.

Pharmaceuticals (Basel)

January 2025

Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia.

: The multiple drug-resistant phenomenon has long since plagued the effectiveness of various chemotherapies used in the treatment of patients with glioblastoma (GBM), which is still incurable to this day. ATP-binding cassette (ABC) transporters function as drug transporters and have been touted to be the main culprits in developing resistance to xenobiotic drugs in GBM. : This review systematically analyzed the efficacy of ABC transporters against various anticancer drugs from 16 studies identified from five databases (PubMed, Medline, Embase, Scopus, and ScienceDirect).

View Article and Find Full Text PDF

-like Transposon Elements Inserted in Cause Male Sterility in Maize.

Int J Mol Sci

January 2025

State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.

Using male sterile (MS) lines instead of normal inbred maternal lines in hybrid seed production can increase the yield and quality with lower production costs. Therefore, developing a new MS germplasm is essential for maize hybrid seed production in the future. Here, we reported a male sterility gene , cloned from a newly found MS mutant .

View Article and Find Full Text PDF

Acquired resistance to chemotherapeutic drugs is the primary cause of treatment failure in the clinic. While multiple factors contribute to this resistance, increased expression of ABC transporters-such as P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and multidrug resistance proteins-play significant roles in the development of resistance to various chemotherapeutics. We found that Erastin, a ferroptosis inducer, was significantly cytotoxic to NCI/ADR-RES, a P-gp-expressing human ovarian cancer cell line.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!