Sulfur Use Efficiency Is a Significant Determinant of Drought Stress Tolerance in Relation to Photosynthetic Activity in Brassica napus Cultivars.

Front Plant Sci

Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture and Life Science, Chonnam National University Gwangju, South Korea.

Published: April 2016

To investigate the varietal difference in sulfur use efficiency (SUE) and drought stress tolerance, Brassica napus 'Mosa' and 'Saturnin' were exposed to polyethylene glycol (PEG)-induced drought stress for 72 h. Direct quantification of S uptake, de novo synthesis of amino acids and proteins was performed by tracing (34)S. The responses of photosynthetic activity in relation to SUE were also examined. The total amount of newly absorbed S decreased with drought stress in both cultivars but the decrease rate was significantly higher in Mosa (-64%) than in Saturnin (-41%). Drought stress also decreased the amount of S assimilated into amino acids ((34)S-amino acids) and proteins ((34)S-proteins). The total amount of S incorporated into amino acids and proteins was generally higher in Saturnin (663.7 μg S per plant) than in Mosa (337.3 μg S per plant). The estimation of SUE based on S uptake (SUpE) and S assimilation (SUaE) showed that SUE was much higher in Saturnin than in Mosa. The inhibition of photosynthetic activity including Rubisco protein degradation caused by drought stress was much lower in the cultivar with higher SUE (Saturnin). The present study clearly indicates that the genotype with higher SUE is more tolerant to PEG-induced drought stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824789PMC
http://dx.doi.org/10.3389/fpls.2016.00459DOI Listing

Publication Analysis

Top Keywords

drought stress
28
photosynthetic activity
12
amino acids
12
acids proteins
12
sulfur efficiency
8
stress tolerance
8
brassica napus
8
peg-induced drought
8
total amount
8
higher saturnin
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!