Zinc (Zn) deficiency in major food crops has been considered as an important factor affecting the crop production and subsequently the human health. Rice (Oryza sativa) is sensitive to Zn deficiency and thereby causes malnutrition to most of the rice-eating Asian populations. Application of zinc solubilizing bacteria (ZSB) could be a sustainable agronomic approach to increase the soil available Zn which can mitigate the yield loss and consequently the nutritional quality of rice. Understanding the molecular interactions between rice and unexplored ZSB is useful for overcoming Zn deficiency problems. In the present study, the role of zinc solubilizing bacterial strain Enterobacter cloacae strain ZSB14 on regulation of Zn-regulated transporters and iron (Fe)-regulated transporter-like protein (ZIP) genes in rice under iron sufficient and deficient conditions was assessed by quantitative real-time reverse transcription PCR. The expression patterns of OsZIP1, OsZIP4, and OsZIP5 in root and shoot of rice were altered due to the Zn availability as dictated by Zn sources and ZSB inoculation. Fe sufficiency significantly reduced the root and shoot OsZIP1 expression, but not the OsZIP4 and OsZIP5 levels. Zinc oxide in the growth medium up-regulated all the assessed ZIP genes in root and shoot of rice seedlings. When ZSB was inoculated to rice seedlings grown with insoluble zinc oxide in the growth medium, the expression of root and shoot OsZIP1, OsZIP4, and OsZIP5 was reduced. In the absence of zinc oxide, ZSB inoculation up-regulated OsZIP1 and OsZIP5 expressions. Zinc nutrition provided to the rice seedling through ZSB-bound zinc oxide solubilization was comparable to the soluble zinc sulfate application which was evident through the ZIP genes' expression and the Zn accumulation in root and shoot of rice seedlings. These results demonstrate that ZSB could play a crucial role in zinc fertilization and fortification of rice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4822286 | PMC |
http://dx.doi.org/10.3389/fpls.2016.00446 | DOI Listing |
Ecotoxicol Environ Saf
January 2025
State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, and College of Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; School of Agriculture and Environment, and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia. Electronic address:
Soil cadmium (Cd) pollution poses a significant environmental threat, impacting global food security and human health. Recent studies have highlighted the potential of arbuscular mycorrhizal (AM) fungi to protect crops from various heavy metal stresses, including Cd toxicity. To elucidate the tolerance mechanisms of maize in response to Cd toxicity under AM symbiosis, this study used two maize genotypes with contrasting Cd tolerance: Zhengdan958 (Cd-tolerant) and Zhongke11 (Cd-sensitive).
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
Background: Samh (Mesembryanthemum forsskalii, M. cryptanthum) belongs to Aizoaceae family and is found in northern Saudi Arabia, primarily in desert or dry shrubland habitats. M.
View Article and Find Full Text PDFProbiotics Antimicrob Proteins
January 2025
Faculty of Biotechnologies (BioTech), ITMO University, 9 Lomonosova Street, 191002, Saint Petersburg, Russia.
Antimicrobial peptides (AMPs) are small, positively charged biomolecules produced by various organisms such as animals, microbes, and plants. These AMPs play a significant role in defense mechanisms and protect from adverse conditions. The emerging problem of drug resistance in microbes poses a global health challenge in treating diseases.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Horticultural Sciences, University of Agriculture, Faisalabad, Pakistan.
This study investigates the effects of lead stress on tomato plants and explores the potential role of plant growth-promoting rhizobacteria (PGPR) to alleviate this stress. The experiment was conducted in pots, introducing varying lead levels (0, 100, 200, 300, 400, and 500 mg kg⁻¹) using lead nitrate. For rhizobacterial inoculation, pre-characterized LTPGP strains S5 Pseudomonas fluorescens A506 and S10 Pseudomonas fluorescens LMG 2189 were used.
View Article and Find Full Text PDFSci Rep
January 2025
Division of Microbiology, Indian Agricultural Research Institute, New Delhi, 110012, India.
Root-knot nematodes (Meloidogyne spp.) are significant pests that cause considerable damage to crops, prompting a need for sustainable control methods. This study evaluated the nematicidal potential of fungal culture filtrates and botanicals as eco-friendly alternatives.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!