Accumulating evidence suggests that cloned mice production by the injection of a somatic cell nucleus into an enucleated oocyte is inefficient. DNA damage and chromatin remodeling failures that occur during embryogenesis following nuclear transfer (NT) might explain the poor development of cloned embryos. To avoid these problems, it is important to elucidate somatic chromatin remodeling after NT. Because polyADP-ribosylation, which is catalyzed mainly by poly(ADP-ribose) polymerase 1 (Parp1), is a major post-translational modification that facilitates DNA repair and chromatin remodeling, we examined the effects of Parp1 deficiency in developing NT embryos. Parp1 was located within the pseudo-pronuclei (PPN) of NT eggs. We observed that NT eggs, after activation by Sr2+, formed PPN with significantly more efficiency in Parp1-null embryos than in wild-type NT embryos. However, most the Parp1-null embryos stopped developing by the four-cell stage. Immunostaining for γH2AX foci, a marker of DNA double strand breaks, showed longer retention in the PPN of Parp1-/- donor NT embryos than in wild-type NT embryos, suggesting that, in the absence of Parp1, DNA breaks are slowly repaired and consequently, entry into the S phase might be delayed. Furthermore, decreases in histone H3 acetylation, H3 monomethylation at lysine 4, and H3 trimethylation at lysine 27 after the Sr2+ activation step were observed in the PPN of Parp1-/- donor embryos. Taken together, our data suggest that Parp1 is involved in the plastic remodeling of chromatin structure after NT by supporting DNA repair and specific histone code modifications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1389203717666160419144502 | DOI Listing |
Int J Nanomedicine
December 2024
Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, People's Republic of China.
Silica nanoparticles (SiNPs) are widely used in biomedical fields, such as drug delivery, disease diagnosis, and molecular imaging. An increasing number of consumer products containing SiNPs are being used without supervision, and the toxicity of SiNPs to the human body is becoming a major problem. SiNPs contact the human body in various ways and cause damage to the structure and function of genetic material, potentially leading to carcinogenesis, teratogenicity and infertility.
View Article and Find Full Text PDFSci Rep
December 2024
Division of Cancer Therapeutics, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
Mutation of genes related to the SWI/SNF chromatin remodeling complex is detected in 20% of all cancers. The SWI/SNF chromatin remodeling complex comprises about 15 subunits and is classified into three subcomplexes: cBAF, PBAF, and ncBAF. Previously, we showed that ovarian clear cell carcinoma cells deficient in ARID1A, a subunit of the cBAF complex, are synthetic lethal with several genes required for glutathione (GSH) synthesis and are therefore sensitive to the GSH inhibitor eprenetapopt (APR-246).
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2024
State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China. Electronic address:
Mammalian SWI/SNF (mSWI/SNF) ATP-dependent chromatin remodeling complexes play critical roles in regulating gene expression and DNA accessibility, and more than 20 % of cancers have mutations in genes encoding chromatin remodeling complexes. The mSWI/SNF family comprises three distinct classes: canonical BAF (cBAF), PBAF, and non-canonical BAF (ncBAF). While the structures of cBAF and PBAF have been resolved by using cryo-electron microscopy (cryo-EM), the modular organization and assembly mechanism of ncBAF remain poorly understood.
View Article and Find Full Text PDFBone
December 2024
Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Centre for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Centre of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China. Electronic address:
Metabolic pathways exhibit fluctuating activities during bone and dental loss and defects, suggesting a regulated metabolic plasticity. Skeletal remodeling is an energy-demanding process related to altered metabolic activities. These metabolic changes are frequently associated with epigenetic modifications, including variations in the expression or activity of enzymes modified through epigenetic mechanisms, which directly or indirectly impact cellular metabolism.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Department of Clinical Pathobiology and Immunological Testing, School of Medical Laboratory, Qilu Medical University, Zibo 255300, China.
Mouse embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs) are pluripotent stem cells derived from pre-implantation and post-implantation embryos, respectively. These cells are capable of interconversion through manipulation of key transcription factors and signaling pathways. While BAF chromatin remodeling complexes are known to play crucial roles in ESC self-renewal and pluripotency, their roles in EpiSCs and their interconversion with ESCs remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!