Magnetically and pH dual responsive dendrosomes for tumor accumulation enhanced folate-targeted hybrid drug delivery.

J Control Release

School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, PR China. Electronic address:

Published: June 2016

Dendrosomes are new tumor targeted drug delivery systems to improve safety and therapeutic effects of antitumor agents. In this study we designed and synthesized magnetically and pH dual responsive dendrosomes with magnetic nanoparticles and folate-targeted dendrimers encapsulated in long-circulating pH sensitive liposomes. Cellular uptake and tissue penetration were assessed on cell lines and tumor spheroids respectively. Xenograft mice were used to study tumor accumulation. The dendrosomes were stable at pH7.4, but responsively released their content at acidic pH. In slightly acid environments, the hybrid vectors showed similar cytotoxicity and cellular uptake to the free folate-dendrimers conjugate due to rapid release. The dendrosomes showed a greater cellular uptake by HeLa cells (FA receptor positive) due to the conjugation with folic acid (FA). In multicellular tumor spheroid tests, a slightly acidic environment and the application of magnet both promoted the permeation efficiency of the hybrid vectors. In the xenograft mice model both in vivo images and tissue distribution assessment indicated that the dendrosomes had higher peak intensity and a longer residence time. Through the synergistic effects of magnetic responsiveness and both passive and active targeting properties, the multi-functional dendrosomes were demonstrated to have great potential as a promising anticancer drug delivery platform.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2016.04.015DOI Listing

Publication Analysis

Top Keywords

drug delivery
12
cellular uptake
12
magnetically dual
8
dual responsive
8
responsive dendrosomes
8
dendrosomes tumor
8
tumor accumulation
8
xenograft mice
8
hybrid vectors
8
dendrosomes
7

Similar Publications

Introduction: Although there are numerous options for epilepsy treatment, its effective control continues unsatisfactory. Thus, search for alternative therapeutic options to improve the efficacy/safety binomial of drugs becomes very attractive to investigate. In this context, intranasal administration of antiseizure drugs formulated on state-of-the-art nanosystems can be a promising strategy.

View Article and Find Full Text PDF

Alopecia, a common dermatological condition, poses significant psychological and social challenges. Despite the availability of various treatments, their efficacy is often limited by poor bioavailability and delivery challenges. Nanostructured lipid carriers have emerged as promising advanced drug delivery systems for alopecia treatment due to their ability to encapsulate both hydrophilic and lipophilic compounds, enhancing their stability, solubility, and controlled release.

View Article and Find Full Text PDF

Antibody-drug conjugates (ADCs) have emerged as a promising strategy in targeted cancer therapy, enabling the precise delivery of cytotoxic agents to tumor sites while minimizing systemic toxicity. However, traditional ADCs face significant limitations, including restricted drug loading capacity, where an optimal drug-to-antibody ratio (DAR) is crucial; low DARs may lead to insufficient potency, while high DARs can cause rapid clearance and increased toxicity. Additionally, ADCs often suffer from instability in circulation due to the potential for premature release of cytotoxic agents, resulting in off-target effects and reduced therapeutic efficacy.

View Article and Find Full Text PDF

X-ray Responsive Antioxidant Drug-Free Hydrogel for Treatment of Radiation Skin Injury.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China.

Radiotherapy (RT) is widely applied in tumor therapy, but inevitable side effects, especially for skin radiation injury, are still a fatal problem and life-threatening challenge for tumor patients. The main components of topical radiation protection preparations currently available on the market are antioxidants, such as SOD, which are limited by their unstable activity and short duration of action, making it difficult to achieve the effects of radiation protection and skin radiation damage treatment. Therefore, we designed a drug-free antioxidant hydrogel patch with encapsulated bioactive epidermal growth factor (EGF) for the treatment of radiation skin injury.

View Article and Find Full Text PDF

Synthetic cells offer a versatile platform for addressing biomedical and environmental challenges, due to their modular design and capability to mimic cellular processes such as biosensing, intercellular communication, and metabolism. Constructing synthetic cells capable of stimuli-responsive secretion is vital for applications in targeted drug delivery and biosensor development. Previous attempts at engineering secretion for synthetic cells have been confined to non-specific cargo release via membrane pores, limiting the spatiotemporal precision and specificity necessary for selective secretion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!