Background: Hypoxia is associated with resistance to chemotherapy and radiotherapy and is randomly distributed within malignancies. Characterization of changes in intratumoral hypoxic regions is possible with specially developed PET tracers such as (18)F-fluoroazomycin arabinoside ((18)F-FAZA) while tumor metabolism can be measured with 2-deoxy-2-[(18)F]fluoro-D-glucose ((18)F-FDG). The purpose of this study was to study the effects of chemotherapy on (18)F-FAZA and (18)F-FDG uptake simultaneously in non-small-cell lung cancer (NSCLC) patients

Methods: At baseline and after the second chemotherapy cycle, both PET/CT with (18)F-FDG and (18)F-FAZA was performed in seven patients with metastasized NSCLC. (18)F-FAZA and (18)F-FDG scans were aligned with deformable image registration using Mirada DBx. The primary tumors were contoured, and on the (18)F-FDG scan, volumes of interest (VOI) were drawn using a 41 % adaptive threshold technique. Subsequently, the resulting VOI was transferred to the (18)F-FAZA scan. (18)F-FAZA maximum tumor-to-background (T/Bgmax) ratio and the fractional hypoxic volume (FHV) were assessed. Measurements were corrected for partial volume effects. Finally, a voxel-by-voxel analysis of the primary tumor was performed to assess regional uptake differences.

Results: In the primary tumor of all seven patients, median (18)F-FDG standard uptake value (SUVmax) decreased significantly (p = 0.03). There was no significant decrease in (18)F-FAZA uptake as measured with T/Bgmax (p = 0.24) or the FHV (p = 0.35). Additionally, volumetric voxel-by-voxel analysis showed that low hypoxic tumors did not significantly change in hypoxic status between baseline and two cycles of chemotherapy, whereas highly hypoxic tumors did. Individualized volumetric voxel-by-voxel analysis revealed that hypoxia and metabolism were not associated before and after 2 cycles of chemotherapy.

Conclusions: Tumor hypoxia and metabolism are independent dynamic events as measured by (18)F-FAZA PET and (18)F-FDG PET, both prior to and after treatment with chemotherapy in NSCLC patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4835394PMC
http://dx.doi.org/10.1186/s13550-016-0187-6DOI Listing

Publication Analysis

Top Keywords

voxel-by-voxel analysis
12
18f-faza
9
non-small-cell lung
8
lung cancer
8
cancer nsclc
8
18f-faza 18f-fdg
8
primary tumor
8
volumetric voxel-by-voxel
8
hypoxic tumors
8
hypoxia metabolism
8

Similar Publications

Estimating the direction of functional connectivity (FC) can help further elucidate complex brain function. However, the estimation of directed FC at the voxel level in fMRI data, and evaluating its performance, has yet to be done. We therefore developed a novel directed seed-based connectivity analysis (SCA) method based on normalized pairwise Granger causality that provides greater detail and accuracy over ROI-based methods.

View Article and Find Full Text PDF

Nonrigid registration method for longitudinal chest CT images in COVID-19.

Heliyon

September 2024

Center for Frontier Medical Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba-shi, Chiba, 263-8522, Japan.

Rationale And Objectives: To analyze morphological changes in patients with COVID-19-associated pneumonia over time, a nonrigid registration technique is required that reduces differences in respiratory phase and imaging position and does not excessively deform the lesion region. A nonrigid registration method using deep learning was applied for lung field alignment, and its practicality was verified through quantitative evaluation, such as image similarity of whole lung region and image similarity of lesion region, as well as visual evaluation by a physician.

Materials And Methods: First, the lung field positions and sizes of the first and second CT images were roughly matched using a classical registration method based on iterative calculations as a preprocessing step.

View Article and Find Full Text PDF

Regional distribution of mechanical strain and macrophage-associated lung inflammation after ventilator-induced lung injury: an experimental study.

Intensive Care Med Exp

September 2024

The Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Akademiska Sjukhuset-Ing. 40, Tr. 3, 75185, Uppsala, Sweden.

Background: Alveolar macrophages activation to the pro-inflammatory phenotype M1 is pivotal in the pathophysiology of Ventilator-Induced Lung Injury (VILI). Increased lung strain is a known determinant of VILI, but a direct correspondence between regional lung strain and macrophagic activation remains unestablished. [Ga]Ga-DOTA-TATE is a Positron Emission Tomography (PET) radiopharmaceutical with a high affinity for somatostatin receptor subtype 2 (SSTR2), which is overexpressed by pro-inflammatory-activated macrophages.

View Article and Find Full Text PDF

Hybrid positron emission tomography/magnetic resonance imaging (PET/MR) opens new possibilities in multimodal multiparametric (m2p) image analyses. But even the simultaneous acquisition of positron emission tomography (PET) and magnetic resonance imaging (MRI) does not guarantee perfect voxel-by-voxel co-registration due to organs and distortions, especially in diffusion-weighted imaging (DWI), which would be, however, crucial to derive biologically meaningful information. Thus, our aim was to optimize fusion and voxel-wise analyses of DWI and standardized uptake values (SUVs) using a novel software for m2p analyses.

View Article and Find Full Text PDF

Optimization and validation of low-field MP2RAGE T mapping on 0.35T MR-Linac: Toward adaptive dose painting with hypoxia biomarkers.

Med Phys

November 2024

Division of Physics and Biophysics, Department of Radiation Oncology, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA.

Background: Stereotactic MR-guided Adaptive Radiation Therapy (SMART) dose painting for hypoxia has potential to improve treatment outcomes, but clinical implementation on low-field MR-Linac faces substantial challenges due to dramatically lower signal-to-noise ratio (SNR) characteristics. While quantitative MRI and T mapping of hypoxia biomarkers show promise, T-to-noise ratio (TNR) optimization at low fields is paramount, particularly for the clinical implementation of oxygen-enhanced (OE)-MRI. The 3D Magnetization Prepared (2) Rapid Gradient Echo (MP2RAGE) sequence stands out for its ability to acquire homogeneous T-weighted contrast images with simultaneous T mapping.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!