Background: Prefrontal Transcranial Magnetic Stimulation (TMS) therapy repeated daily over 4-6 weeks (20-30 sessions) is US Food and Drug Administration (FDA) approved for treating Major Depressive Disorder in adults who have not responded to prior antidepressant medications. In 2011, leading TMS clinical providers and researchers created the Clinical TMS Society (cTMSs) (www.clinicaltmssociety.org, Greenwich, CT, USA), incorporated in 2013.
Methods: This consensus review was written by cTMSs leaders, informed by membership polls, and approved by the governing board. It summarizes current evidence for the safety and efficacy of the use of TMS therapy for treating depression in routine clinical practice. Authors systematically reviewed the published TMS antidepressant therapy clinical trials. Studies were then assessed and graded on their strength of evidence using the Levels of Evidence framework published by the University of Oxford Centre for Evidence Based Medicine. The authors then summarize essentials for using TMS therapy in routine clinical practice settings derived from discussions and polls of cTMSs members. Finally, each summary clinical recommendation is presented with the substantiating peer-reviewed, published evidence supporting that recommendation. When the current published clinical trial evidence was insufficient or incomplete, expert opinion was included when sufficient consensus was available from experienced clinician users among the membership of the cTMSs, who were polled at the Annual Meetings in 2014 and 2015.
Conclusions: Daily left prefrontal TMS has substantial evidence of efficacy and safety for treating the acute phase of depression in patients who are treatment resistant or intolerant. Following the clinical recommendations in this document should result in continued safe and effective use of this exciting new treatment modality.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5612370 | PMC |
http://dx.doi.org/10.1016/j.brs.2016.03.010 | DOI Listing |
Cureus
December 2024
Research, Nibbot International, Mexico City, MEX.
Background: Autism spectrum disorder (ASD) is a heterogeneous neurobiological condition characterized by behavioral problems and delayed neurodevelopment. Although transcranial magnetic stimulation (TMS) has been proposed as an alternative treatment for patients with ASD because of its promising benefits in reducing repetitive behaviors and enhancing executive functions, the use of high-intensity pulses (Hi-TMS) appears to be related to the side effects of the therapy. Low-intensity TMS (Li-TMS) has been partially investigated, but it may have clinical effects on ASD and simultaneously increase treatment safety.
View Article and Find Full Text PDFJ Neurosci
January 2025
Department of Physical Therapy, Movement and Rehabilitation Sciences, Northeastern University, Boston, MA 02115, USA.
Humans adjust their movement to changing environments effortlessly via multisensory integration of the effector's state, motor commands, and sensory feedback. It is postulated that frontoparietal (FP) networks are involved in the control of prehension, with dorsomedial (DM) and dorsolateral (DL) regions processing the reach and the grasp, respectively. This study tested (5F, 5M participants) the differential involvement of FP nodes (ventral premotor cortex - PMv, dorsal premotor cortex - PMd, anterior intraparietal sulcus - aIPS, and anterior superior parietal-occipital cortex - aSPOC) in online adjustments of reach-to-grasp coordination to mechanical perturbations that disrupted arm transport.
View Article and Find Full Text PDFJAMA Neurol
January 2025
Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore.
Importance: Biomarkers would greatly assist decision-making in the diagnosis, prevention, and treatment of chronic pain.
Objective: To undertake analytical validation of a sensorimotor cortical biomarker signature for pain consisting of 2 measures: sensorimotor peak alpha frequency (PAF) and corticomotor excitability (CME).
Design, Setting, And Participants: This cohort study at a single center (Neuroscience Research Australia) recruited participants from November 2020 to October 2022 through notices placed online and at universities across Australia.
J Neurophysiol
February 2025
Breathing Research and Therapeutics Center, Department of Physical Therapy, University of Florida, Gainesville, Florida, United States.
We present a case report of a 42-year-old female with post-West Nile virus meningoencephalitis who exhibited unique, long-latency diaphragm potentials evoked by transcranial and cervical magnetic stimulation after exposure to acute intermittent hypoxia (AIH). The subject was recruited for a study investigating AIH effects on respiratory motor function in healthy individuals. She had contracted West Nile virus infection 5 years before assessment that resulted in hospitalization and persistent allodynia but was not reported to the research team.
View Article and Find Full Text PDFExp Brain Res
January 2025
Dept. of Neurosurgery, Upstate Medical University, 750 E. Adams St, Syracuse, NY, 13210, USA.
Transcranial magnetic stimulation (TMS) has been used for many years to study the pathophysiology of amyotrophic lateral sclerosis (ALS). Based on single- or dual-pulse TMS and EMG and/or single motor unit (MU) recordings, many groups have described a loss of central inhibition as an early marker of ALS dysfunction, reflecting a state of cortical 'hyperexcitability'. This conclusion is not without its detractors, however, leading us to reexamine this issue using 4-pulse TMS, shown previously to be more effective for testing central motor pathway functional integrity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!