Serum ferritin is an excellent marker for total iron content in the body and is essential for the diagnosis of iron deficiency or iron overload. Recently, a simple and rapid method, which utilizes immunochromatography for the quantification of serum ferritin, was developed. However, the range of measurement in previous reagents was limited (10-500 ng/mL). This range is rather narrow and is not fully helpful for the diagnosis of iron overload which sometimes occurs as a result of prolonged transfusions, or for monitoring iron contents during iron chelation therapy against iron overload. In the present study we evaluated the basic performance of the newly developed "Point Strip ferritin-3000", which can measure serum ferritin in the range of 300-3,000 ng/mL. Coefficient of variation (CV) s of within and inter-day assays were in the ranges of 7.3-11.1% and 2.1-5.2%, respectively. Using 87 serum samples obtained from the patients with written informed consents, the correlation coefficient was calculated to be 0.93 compared to the control method. In addition, the quantification of serum ferritin by "Point Strip ferritin-3000" was not influenced by bilirubin, hemoglobin, chyle, rheumatoid factor, or ascorbic acid. From our data, "Point Strip ferritin-3000" is reliable reagent in the range of 300-3,000 ng/mL, and is therefore considered to be useful for the diagnosis of iron overload, as well as for monitoring iron contents during iron chelation therapy. In addition, this quantification method can be easily performed using a small desktop equipment without any special technique, making this system applicable for epidemiological surveys and clinical studies.

Download full-text PDF

Source

Publication Analysis

Top Keywords

"point strip
16
strip ferritin-3000"
16
serum ferritin
16
iron overload
16
quantification serum
12
diagnosis iron
12
iron
10
basic performance
8
simple rapid
8
monitoring iron
8

Similar Publications

Diabetes is a disorder attributed to impaired production or utilization of insulin and requires rapid precise monitoring of glucose levels. The fabrication of nanotechnology-based non-invasive biosensors for glucose detection holds significant promise for improved diabetes care and point-of-care diagnostics. The study demonstrates a novel molecularly imprinted polymers (ADMIPs) based sensitive biosensor for glucose estimation in saliva using three distinct sensing platforms -cotton swab, paper strip and polymeric film by colorimetric assay.

View Article and Find Full Text PDF

In this study, a novel rapid immunochromatographic (IC) test for African swine fever virus (ASFV) antibodies is presented. An immunochromatographic test (IC) is a detection technique that combines membrane chromatography with immunolabeling. This approach saves time for antibody preparation, resulting in a shorter production cycle.

View Article and Find Full Text PDF

Coagulation disorders can lead to dangerous bleeding or clot formation. Since centralized laboratories cannot provide rapid results for timely treatment intervention in patients with coagulation disorders, the existence of coagulation sensors for the general public is necessary. The purpose of the present research is to design and fabricate a novel, portable, low-cost, paper-based colorimetric sensor for measuring blood prothrombin time.

View Article and Find Full Text PDF

Introduction: Fentanyl and xylazine test strips (FTS, XTS) are simple point-of-care tests that determine the presence of fentanyl or xylazine in a substance before use. Access to FTS and XTS is limited. For pharmacists who are willing to sell an FTS, there is little guidance about how to implement FTS sales and counseling as no training for community pharmacists regarding FTS and XTS exists.

View Article and Find Full Text PDF

A ground-breaking graphene-based biosensor designed for label-free detection of immunoglobulin M (IgM) achieving a remarkable concentration of 100 zeptomolar (10 m), is reported. The sensor is a two-terminal device and incorporates a millimeter-wide gold interface, bio-functionalized with ≈10 anti-IgM antibodies and capacitively coupled to a bare graphene electrode through a water-soaked paper strip. In this configuration, few affinity binding events trigger a collective electrostatic reorganization of the protein layer, leading to an extended surface potential (SP) shift of the biofunctionalized Au surface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!