The integration of underwater 3D data captured by acoustic and optical systems is a promising technique in various applications such as mapping or vehicle navigation. It allows for compensating the drawbacks of the low resolution of acoustic sensors and the limitations of optical sensors in bad visibility conditions. Aligning these data is a challenging problem, as it is hard to make a point-to-point correspondence. This paper presents a multi-sensor registration for the automatic integration of 3D data acquired from a stereovision system and a 3D acoustic camera in close-range acquisition. An appropriate rig has been used in the laboratory tests to determine the relative position between the two sensor frames. The experimental results show that our alignment approach, based on the acquisition of a rig in several poses, can be adopted to estimate the rigid transformation between the two heterogeneous sensors. A first estimation of the unknown geometric transformation is obtained by a registration of the two 3D point clouds, but it ends up to be strongly affected by noise and data dispersion. A robust and optimal estimation is obtained by a statistical processing of the transformations computed for each pose. The effectiveness of the method has been demonstrated in this first experimentation of the proposed 3D opto-acoustic camera.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4851050 | PMC |
http://dx.doi.org/10.3390/s16040536 | DOI Listing |
Langmuir
January 2025
College of Light Industry and Materials, Chengdu Textile College, Chengdu, Sichuan 610039, China.
The treatment of oily wastewater and oil/water mixtures has received more and more attention. In this study, a Zn-MOF (ZIF-8) decorated polyimide (PI) nanofiber membrane with triple self-cleaning performance was constructed, and the decoration of ZIF-8 on the PI membrane improved the hydrophilicity of the composite membrane, which further enhanced the underwater oil resistance, and the mechanical properties of the membranes improved significantly with the increase of in situ growth time. In addition, the inherent photocatalytic and antibacterial properties of ZIF-8 endowed the membranes with fantastic performance.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China.
Flexible electronics have been rapidly advancing and have garnered significant interest in monitoring physiological activities and health conditions. However, flexible electronics are prone to detachment in humid environments, so developing human-friendly flexible electronic devices that can effectively monitor human movement under various aquatic conditions and function as flexible electrodes remains a significant challenge. Here, we report a strongly adherent, self-healing, and swelling-resistant conductive hydrogel formed by combining the dual synergistic effects of hydrogen bonding and dipole-dipole interactions.
View Article and Find Full Text PDFJ Acoust Soc Am
January 2025
College of Meteorology and Oceanography, National University of Defense Technology, Changsha 410073, China.
Underwater acoustic propagation is a complex phenomenon in the ocean environment. Traditional methods for calculating acoustic propagation loss rely on solving complex partial differential equations. Deep learning methods, leveraging their robust nonlinear approximation capabilities, can model various physical phenomena effectively, significantly reducing computation time and cost.
View Article and Find Full Text PDFJ Morphol
January 2025
Department of Biology, California State University, Northridge, Northridge, California, USA.
A major goal of evolutionary ecology is to understand the interaction between ecological differences and the functional morphology of organisms. Studies of this type are common among flying birds but less so in penguins. Penguins (Spheniscidae) are the most derived extant underwater flying birds using their wings for swimming and beak when foraging.
View Article and Find Full Text PDFAdv Mater
January 2025
Sustainability Institute, The Ohio State University, Columbus, OH, 43210, USA.
Nature provides many examples of the benefits of nanoscopic surface structures in areas of adhesion and antifouling. Herein, the design, fabrication, and characterization of liquid crystal elastomer (LCE) films are presented with nanowire surface structures that exhibit tunable stimuli-responsive deformations and enhanced adhesion properties. The LCE films are shown to curl toward the side with the nanowires when stimulated by heat or organic solvent vapors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!