Objective: Renal fibrosis is the common pathological foundation of many chronic kidney diseases (CKDs). The aim of this study was to investigate whether Hydroxysafflor yellow A (HSYA) can preserve renal function by inhibiting the progression of renal fibrosis and the potential mechanisms.
Methods: Renal fibrosis was induced by unilateral ureteral obstruction (UUO) performed on 7-week-old C57BL/6 mice. HSYA (10, 50 and 100 mg/kg) were intragastrically administered. Sham group and model group were administered with the same volume of vehicle. Serum and kidney samples were collected 14 days after the UUO surgery. Serum biochemical indicators were measured by automatic biochemical analyzer. Histological changes were evaluated by HE and Masson staining. In vitro, the anti-fibrotic effect of HSYA was tested on human recombinant transforming growth factor-β1 (TGF-β1) stimulated HK-2 cells. The protein levels of α-SMA, collagen-I and fibronectin in kidney tissue and HK-2 cells were measured by immunohistochemistry and immunofluorescence. The protein levels of apoptosis-relative and TGF-β1/Smad3 signaling were detected by western blot.
Results: HSYA slowed the development of renal fibrosis both in vivo and in vitro. In UUO rats, renal function index suggested that HSYA treatment decreased the level of serum creatinine (Scr) and blood urea nitrogen (BUN) rose by UUO (P<0.05). HE staining and Masson staining demonstrated that kidney interstitial fibrosis, tubular atrophy, and inflammatory cell infiltration were notably attenuated in the high-dose HSYA group compared with the model group. The expressions of α-SMA, collagen-I and fibronectin were decreased in the UUO kidney and HK-2 cells of the HSYA-treatment group. Moreover, HSYA reduced the apoptotic rate of HK-2 cells stimulated by TGF-β1. Further study revealed that HSYA regulated the TGF-β1/Smads signaling pathway both in kidney tissue and HK-2 cells.
Conclusions: These results suggested that HSYA had a protective effect against fibrosis in renal cells, at least partly, through inhibiting TGF-β1/smad3-mediated Epithelial-mesenchymal transition signaling pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4835075 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0153409 | PLOS |
Acad Radiol
January 2025
Department of Radiology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310007, Zhejiang Province, China (Y.R., W.L., Y.Z., S.K., F.C.). Electronic address:
Rationale And Objectives: Non-invasive assessment of renal fibrosis in patients with chronic kidney disease (CKD) remains a clinical challenge. This study aims to integrate radiomics and clinical factors to develop an end-to-end pipeline for predicting interstitial fibrosis (IF) in CKD patients.
Materials And Methods: This retrospective study included 80 patients with CKD, with 53 patients in training set and 27 patients in test set.
Folia Morphol (Warsz)
January 2025
Department of Anatomy, Kasr El-Aini Faculty of Medicine, Cairo University, Cairo, Egypt, Egypt.
Background: Diabetic nephropathy (DN), a common complication of type 2 diabetes (T2D), significantly contributes to end-stage kidney disease (ESKD). Despite conventional treatments aimed at slowing disease progression, there is a pressing need for novel therapies. This study evaluates the potential therapeutic impact of adipose tissue derived stromal vascular fraction (SVF) on early diabetic nephrotoxicity in a rat model.
View Article and Find Full Text PDFClin Exp Nephrol
January 2025
Department of Pediatrics, Jichi Medical University, Tochigi, Japan.
Background: Renal fibrosis is strongly correlated with renal functional outcomes. Therefore, this is a significant finding in determining renal prognosis. There are various reports on the imaging evaluation of renal fibrosis, but these are not well established.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
January 2025
Division of Nephrology and Hypertension, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA.
The kidney is highly metabolically active, and injury induces changes in metabolism that can impact repair and fibrosis progression. Changes in expression of metabolism-related genes and proteins provide valuable data, but functional metabolic assays are critical to confirm changes in metabolic activity. Stable isotope metabolomics are the gold standard, but these involve considerable cost and specialized expertise.
View Article and Find Full Text PDFInt J Gen Med
January 2025
Department of Urology, Peking University People's Hospital, Beijing, 100044, People's Republic of China.
Objective: This study investigated the efficacy of comprehensive management and predictable inflammatory markers for idiopathic retroperitoneal fibrosis (iRPF)-related hydronephrosis outcomes.
Methods: Patients with iRPF-related hydronephrosis underwent surgical (ureteral stent and/or nephrostomy tube placement) and medical (corticosteroid-based multiple immunosuppressants) management were classified according to stent-indwelling outcomes. Univariate analysis of clinical profiles was conducted to screen possible predictors of hydronephrosis remission.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!