Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We present a rapid and controllable method to create microscale heterogeneities in the 3D stiffness of a soft material by printing patterns with a ferrofluid ink. An ink droplet moved through a liquid polydimethylsiloxane (PDMS) volume using an externally applied magnetic field sheds clusters of magnetic nanoparticles (MNPs) in its wake. By varying the field spatiotemporally, a well-defined three-dimensional curvilinear feature is printed that contains MNP clusters. Subsequent cross-linking of the PDMS preserves the feature in place after the magnetic field is removed. Since the ferrofluid ink interferes with the cross-linking of PDMS, a 3D print containing ink density variations leads to corresponding spatial deviations in the elastic modulus of the matrix. The modulus is mapped in the experiments with atomic force microscopy. This rapid method to print 3D heterogeneities in soft matter promises the ability to mimic mechanical variations that occur in natural biomaterials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.6b03091 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!