The technical variables of the solid-phase immunofiltration assay (SPIA) for the detection of antibodies bound to antigens on a solid-phase filter have been investigated. The binding to solid-phase filters of 125I-labelled axial filament proteins derived from Treponema phagedenis and the optimal conditions for blocking non-specific protein binding were analysed. Axial filament was applied to nitrocellulose, Hybond Nylon and Zeta Probe. After extensive rinsing, the highest amount (68%) of axial filament was observed bound to Zeta Probe. However, blocking non-specific protein binding by pre-wetting the filter with rinsing buffer containing 0.5% Tween 20, prevented the binding of protein to the filter only when nitrocellulose was used as solid phase. Tween 20 (0.5%) in the rinsing and incubation solutions was found to be necessary for the reduction of non-specific binding of contaminants in turbid sera. However, the use of such solutions resulted in a substantial leakage of antigen (47%) during rinsing procedures. Binding of antigen-specific antibody was analysed using 125I-labelled protein A. The maximal possible binding of the antibody occurred within 5 min when the antibody solution was filtered. For optimal binding of 125I-labelled protein A an incubation time of 1 h was needed. It is suggested that solid-phase immunofiltration may provide a rapid alternative for radioimmunoassays or enzyme immunoassays for the detection of specific antibodies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0022-1759(89)90378-5DOI Listing

Publication Analysis

Top Keywords

solid-phase immunofiltration
12
axial filament
12
immunofiltration assay
8
rapid alternative
8
binding
8
blocking non-specific
8
non-specific protein
8
protein binding
8
zeta probe
8
125i-labelled protein
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!