Production of Succinate from Acetate by Metabolically Engineered Escherichia coli.

ACS Synth Biol

Biological Systems Engineering Department, Virginia Tech , 304 Seitz Hall, Blacksburg, Virginia 24061, United States.

Published: November 2016

Acetate, a major component of industrial biological wastewater and of lignocellulosic biomass hydrolysate, could potentially be a less costly alternative carbon source. Here we engineered Escherichia coli MG1655 strain for succinate production from acetate as the sole carbon source. Strategies of metabolic engineering included the blockage of the TCA cycle, redirection of the gluconeogenesis pathway, and enhancement of the glyoxylate shunt. The engineered strain MG03 featuring the deletion of genes: succinate dehydrogenase (sdhAB), isocitrate lyase regulator (iclR), and malic enzymes (maeB) accumulated 6.86 mM of succinate in 72 h. MG03(pTrc99a-gltA) overexpressing citrate synthase (gltA) accumulated 16.45 mM of succinate and the yield reached 0.46 mol/mol, about 92% of the maximum theoretical yield. Resting-cell was adopted for the conversion of acetate to succinate, and the highest concentration of succinate achieved 61.7 mM.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssynbio.6b00052DOI Listing

Publication Analysis

Top Keywords

engineered escherichia
8
escherichia coli
8
carbon source
8
succinate
6
production succinate
4
acetate
4
succinate acetate
4
acetate metabolically
4
metabolically engineered
4
coli acetate
4

Similar Publications

The magnetization strategy of isoquinoline alkaloids has been successfully used in the extraction and isolation, but the effect of the magnetization on biological activities of those alkaloids still deserves further investigation. Therefore, the antibacterial, lipid-lowering and antioxidant activities of five isoquinoline alkaloids (berberine, tetrahydroberberine, palmatine, tetrahydropalmatine and tetrahydropapavine) before and after magnetization were compared in this study, and the results showed that the relevant activities were enhanced after magnetization. Additionally, among the five magnetic derivatives studied, berberine magnetic derivative ([Ber·H][FeCl]) had the best antibacterial effect on S.

View Article and Find Full Text PDF

Growth inhibition by ppc deletion is rescued by isocitrate dehydrogenase mutations in Escherichia coli.

FEMS Microbiol Lett

January 2025

Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.

Phosphoenolpyruvate carboxylase encoded by ppc catalyzes the anaplerotic reaction of oxaloacetate in the TCA cycle in Escherichia coli. Deletion of ppc does not prevent the cells from replenishing oxaloacetate via the glyoxylate shunt, but the ppc-deletion strain almost did not grow on glucose. In the present study, we obtained evolved strains by deleting both ppc and mutS to increase the mutation rate and investigated the mechanisms for improving growth by analyzing the mutated genes.

View Article and Find Full Text PDF

Prenol production in a microbial host via the "Repass" Pathways.

Metab Eng

January 2025

Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, USA. Electronic address:

Prenol and isoprenol are promising advanced biofuels and serve as biosynthetic precursors for pharmaceuticals, fragrances, and other industrially relevant compounds. Despite engineering improvements that circumvent intermediate cytotoxicity and lower energy barriers, achieving high titer 'mevalonate (MVA)-derived' prenol has remained elusive. Difficulty in selective prenol production stems from the necessary isomerization of isopentenyl diphosphate (IPP) to dimethylallyl diphosphate (DMAPP) as well as the intrinsic toxicity of these diphosphate precursors.

View Article and Find Full Text PDF

Selective pressure of various levels of erythromycin on the development of antibiotic resistance.

Environ Pollut

January 2025

Civil and Construction Engineering and Environmental and Ecological Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, Indiana, United States 47907. Electronic address:

This study evaluated microbial fitness under selective pressure of various erythromycin concentrations and the development of resistance genes in Escherichia coli (E. coli) and Enterococcus faecalis (E. faecalis).

View Article and Find Full Text PDF

A Fast-Pass, Desorption Electrospray Ionization Mass Spectrometry Strategy for Untargeted Metabolic Phenotyping.

J Am Soc Mass Spectrom

January 2025

Department of Chemistry, Center for Innovative Technology, Vanderbilt University, Nashville, Tennessee 37235, United States.

Desorption electrospray ionization mass spectrometry imaging (DESI-MSI) provides direct analytical readouts of small molecules that can be used to characterize the metabolic phenotypes of genetically engineered bacteria. In an effort to accelerate the time frame associated with the screening of mutant libraries, we have developed a high-throughput DESI-MSI analytical workflow implementing a single raster line-scan strategy that facilitates the collection of location-resolved molecular information from engineered strains on a subminute time scale. Evaluation of this "Fast-Pass" DESI-MSI phenotyping workflow on analytical standards demonstrated the capability of acquiring full metabolic profiling information with a throughput of ∼40 s per sample.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!