Acetate, a major component of industrial biological wastewater and of lignocellulosic biomass hydrolysate, could potentially be a less costly alternative carbon source. Here we engineered Escherichia coli MG1655 strain for succinate production from acetate as the sole carbon source. Strategies of metabolic engineering included the blockage of the TCA cycle, redirection of the gluconeogenesis pathway, and enhancement of the glyoxylate shunt. The engineered strain MG03 featuring the deletion of genes: succinate dehydrogenase (sdhAB), isocitrate lyase regulator (iclR), and malic enzymes (maeB) accumulated 6.86 mM of succinate in 72 h. MG03(pTrc99a-gltA) overexpressing citrate synthase (gltA) accumulated 16.45 mM of succinate and the yield reached 0.46 mol/mol, about 92% of the maximum theoretical yield. Resting-cell was adopted for the conversion of acetate to succinate, and the highest concentration of succinate achieved 61.7 mM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acssynbio.6b00052 | DOI Listing |
Sci Rep
January 2025
School of Chemical Engineering, Sichuan University, Chengdu, 610065, China.
The magnetization strategy of isoquinoline alkaloids has been successfully used in the extraction and isolation, but the effect of the magnetization on biological activities of those alkaloids still deserves further investigation. Therefore, the antibacterial, lipid-lowering and antioxidant activities of five isoquinoline alkaloids (berberine, tetrahydroberberine, palmatine, tetrahydropalmatine and tetrahydropapavine) before and after magnetization were compared in this study, and the results showed that the relevant activities were enhanced after magnetization. Additionally, among the five magnetic derivatives studied, berberine magnetic derivative ([Ber·H][FeCl]) had the best antibacterial effect on S.
View Article and Find Full Text PDFFEMS Microbiol Lett
January 2025
Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.
Phosphoenolpyruvate carboxylase encoded by ppc catalyzes the anaplerotic reaction of oxaloacetate in the TCA cycle in Escherichia coli. Deletion of ppc does not prevent the cells from replenishing oxaloacetate via the glyoxylate shunt, but the ppc-deletion strain almost did not grow on glucose. In the present study, we obtained evolved strains by deleting both ppc and mutS to increase the mutation rate and investigated the mechanisms for improving growth by analyzing the mutated genes.
View Article and Find Full Text PDFMetab Eng
January 2025
Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, USA. Electronic address:
Prenol and isoprenol are promising advanced biofuels and serve as biosynthetic precursors for pharmaceuticals, fragrances, and other industrially relevant compounds. Despite engineering improvements that circumvent intermediate cytotoxicity and lower energy barriers, achieving high titer 'mevalonate (MVA)-derived' prenol has remained elusive. Difficulty in selective prenol production stems from the necessary isomerization of isopentenyl diphosphate (IPP) to dimethylallyl diphosphate (DMAPP) as well as the intrinsic toxicity of these diphosphate precursors.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Civil and Construction Engineering and Environmental and Ecological Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, Indiana, United States 47907. Electronic address:
This study evaluated microbial fitness under selective pressure of various erythromycin concentrations and the development of resistance genes in Escherichia coli (E. coli) and Enterococcus faecalis (E. faecalis).
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
January 2025
Department of Chemistry, Center for Innovative Technology, Vanderbilt University, Nashville, Tennessee 37235, United States.
Desorption electrospray ionization mass spectrometry imaging (DESI-MSI) provides direct analytical readouts of small molecules that can be used to characterize the metabolic phenotypes of genetically engineered bacteria. In an effort to accelerate the time frame associated with the screening of mutant libraries, we have developed a high-throughput DESI-MSI analytical workflow implementing a single raster line-scan strategy that facilitates the collection of location-resolved molecular information from engineered strains on a subminute time scale. Evaluation of this "Fast-Pass" DESI-MSI phenotyping workflow on analytical standards demonstrated the capability of acquiring full metabolic profiling information with a throughput of ∼40 s per sample.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!