Rising temperatures are predicted to melt all perennial ice cover in the Arctic by the end of this century, thus opening up suitable habitat for temperate and subarctic species. Canopy-forming seaweeds provide an ideal system to predict the potential impact of climate-change on rocky-shore ecosystems, given their direct dependence on temperature and their key role in the ecological system. Our primary objective was to predict the climate-change induced range-shift of Fucus distichus, the dominant canopy-forming macroalga in the Arctic and subarctic rocky intertidal. More specifically, we asked: which Arctic/subarctic and cold-temperate shores of the northern hemisphere will display the greatest distributional change of F. distichus and how will this affect niche overlap with seaweeds from temperate regions? We used the program MAXENT to develop correlative ecological niche models with dominant range-limiting factors and 169 occurrence records. Using three climate-change scenarios, we projected habitat suitability of F. distichus - and its niche overlap with three dominant temperate macroalgae - until year 2200. Maximum sea surface temperature was identified as the most important factor in limiting the fundamental niche of F. distichus. Rising temperatures were predicted to have low impact on the species' southern distribution limits, but to shift its northern distribution limits poleward into the high Arctic. In cold-temperate to subarctic regions, new areas of niche overlap were predicted between F. distichus and intertidal macroalgae immigrating from the south. While climate-change threatens intertidal seaweeds in warm-temperate regions, seaweed meadows will likely flourish in the Arctic intertidal. Although this enriches biodiversity and opens up new seaweed-harvesting grounds, it will also trigger unpredictable changes in the structure and functioning of the Arctic intertidal ecosystem.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4801954 | PMC |
http://dx.doi.org/10.1002/ece3.2001 | DOI Listing |
Animals (Basel)
December 2024
School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China.
Off-seasonal water level regulations disrupt the biological traits and phenological rhythms of native fish species, yet their impacts on interspecific trophic interactions remain understudied. This study employed stable isotope analysis to assess the trophic dynamics of three fish species (, , and ) across different water periods in Hongze Lake. The findings revealed that all three species occupied similar mid-level trophic positions, with no significant difference among water periods ( > 0.
View Article and Find Full Text PDFmSystems
January 2025
Zoological Institute, Kiel University, Kiel, Germany.
The microbiomes of host organisms and their direct source environments are closely linked and key for shaping microbial community dynamics. The relationship between these linked dynamics is largely unexplored because source substrates are usually unavailable. To address this current knowledge gap, we employed bacteriovorous nematodes as a unique model system, for which source substrates like rotting apples can be easily collected.
View Article and Find Full Text PDFAnn Bot
January 2025
Ecology and Evolutionary Biology Interdisciplinary Degree Program, Texas A&M University.
Background And Aims: Quantifying niche similarity among closely related species offers myriad insights into evolutionary history and ecology. In this study, our aim was to explore the interplay of geographic and niche space for rare, endemic plant species and determine if endemic habitats were environmentally similar or unique.
Methods: We characterized the niche of all Leavenworthia species, a genus of rare plants endemic to rocky glades in the eastern United States, using WorldClim data, surface geology, elevation, and slope.
Bull Entomol Res
January 2025
Insect-Plant Interaction Laboratory, Department of Entomology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung City, Taiwan.
Parasitoids employ diverse oviposition strategies to enhance offspring survival and maximise fitness gains from hosts. Ladybird parasitoids, significant natural enemies of ladybirds, have the potential to disrupt biocontrol efforts, yet their biology and ecology remain poorly understood. This study investigated the host-parasitoid interaction among three sympatric larval endoparasitoids of (Coleoptera: Coccinellidae): (Hymenoptera: Encyrtidae), (Hymenoptera: Proctotrupidae) and (Hymenoptera: Eulophidae).
View Article and Find Full Text PDFInsects
December 2024
Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan 44600, Jalisco, Mexico.
Background: Bees rely on plants for nutrition and reproduction, making the preservation of natural areas crucial as pollinator reservoirs. Seasonal tropical dry forests are among the richest habitats for bees, but only 27% of their original extent remains in Mexico. In contrast, temperate forests harbor fewer bee species and face high deforestation rates, with 40% of their area converted to other land uses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!