Description of α-linolenic acid (cis-9,cis-12,cis-15-18 : 3, ALA) metabolism in the rumen is incomplete. Ruminal digesta samples were incubated with ALA and buffer containing water or deuterium oxide to investigate the products and mechanisms of ALA biohydrogenation. Geometric Δ9,11,15-18 : 3 isomers were the main intermediates formed from ALA. An increase in the n+1 isotopomers of Δ9,11,15-18 : 3 was due to 2H labelling at C-13. Isomers of Δ9,11,13-18 : 3, cis-7,cis-12,cis-15-18 : 3 and cis-8,cis-12,cis-15-18 : 3 were also formed. No increase in n+1 isotopomers of Δ7,12,15-18 : 3 or Δ8,12,15-18 : 3 was detected. Enrichment in n+2 isotopomers of 18 : 2 products indicated that ALA metabolism continued via the reduction of 18 : 3 intermediates. Isomers of Δ9,11,15-18 : 3 were reduced to Δ11,15-18 : 2 labelled at C-9 and C-13. ALA resulted in the formation of Δ11,13-18 : 2 and Δ12,14-18 : 2 containing multiple 2H labels. Enrichment of the n+3 isotopomer of Δ12,15-18 : 2 was also detected. Metabolism of ALA during incubations with rumen contents occurs by one of three distinct pathways. Formation of Δ9,11,15-18 : 3 appears to be initiated by H abstraction on C-13. Octadecatrienoic intermediates containing cis-12 and cis-15 double bonds are formed without an apparent H exchange with water. Labelling of Δ9,11,13-18 : 3 was inconclusive, suggesting formation by an alternative mechanism. These findings explain the appearance of several bioactive fatty acids in muscle and milk that influence the nutritional value of ruminant-derived foods.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S0007114516001446DOI Listing

Publication Analysis

Top Keywords

α-linolenic acid
8
rumen contents
8
products mechanisms
8
ala metabolism
8
increase n+1
8
n+1 isotopomers
8
ala
7
metabolism
4
metabolism α-linolenic
4
acid incubations
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!