In 1964, a human humerus was found in a sedimentary deposit in Lezetxiki Cave (Basque Country, northern Iberia). The first studies on the stratigraphy, associated mammal faunal remains and lithic implements placed the deposits containing the humerus into the Riss glacial stage. Direct chronometric evidence has so far been missing, and the previous chronostratigraphic framework and faunal dating gave inconsistent results. Here we report laser ablation U-series analyses on the humerus yielding a minimum age of 164 ± 9 ka, corresponding to MIS 6. This is the only direct dating analysis of the Lezetxiki humerus and confirms a Middle Pleistocene age for this hominin fossil. Morphometric analyses suggest that the Lezetxiki humerus has close affinities to other Middle Pleistocene archaic hominins, such as those from La Sima de los Huesos at Atapuerca. This emphasizes the significance of the Lezetxiki fossil within the populations that predate the Neanderthals in south-western Europe. It is thus an important key fossil for the understanding of human evolution in Europe during the Middle Pleistocene, a time period when a great morphological diversity is observed but whose phylogenetic meaning is not yet fully understood.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhevol.2016.02.001DOI Listing

Publication Analysis

Top Keywords

middle pleistocene
16
lezetxiki humerus
12
analysis lezetxiki
8
pleistocene age
8
basque country
8
country northern
8
northern iberia
8
humerus
6
lezetxiki
5
direct u-series
4

Similar Publications

The Grotte du Bison Neandertals (Arcy-sur-Cure, France).

J Hum Evol

December 2024

Univ. Paris 1 Panthéon-Sorbonne, Univ. Paris Ouest Nanterre La Défense, MSH Mondes-CNRS-Ministère de la Culture, ArScAn, UMR 7041, 92000, Nanterre, France.

The Grotte du Bison, in Arcy-sur-Cure (Yonne, France), yielded a large assemblage of 49 Neandertal remains from late Mousterian layers, offering critical insights for the study of Middle to Upper Paleolithic populations of Western Europe. Previous studies described the external morphology of 13 isolated teeth and a partial maxilla. Building on this previous work, the current study provides further descriptions and analyses of the remains, including one postcranial fragment, six cranial fragments, two maxillary fragments, and 40 isolated teeth.

View Article and Find Full Text PDF

Evolutionary Histories of and .

Ecol Evol

December 2024

Kunming Botanical Garden, Kunming Institute of Botany, Chinese Academy of Sciences Kunming China.

The genus is widely distributed, primarily in East Asia. is located at the northern limit of this genus distribution, and understanding changes in its distribution is crucial for understanding the evolution of plants in this region, as well as their relationship with geological history and climate change. Moreover, the classification of sect.

View Article and Find Full Text PDF

Environmental factors such as mountain tectonic movements and monsoons can enhance genetic differentiation by hindering inter- and intra-specific gene flow. However, the phylogeographic breaks detected within species may differ depending on the different molecular markers used, and biological traits may be a major confounding factor. is a vulnerable relict species distributed throughout the Sichuan Basin.

View Article and Find Full Text PDF

Objectives: We report the discovery and description of three human teeth from the Middle Paleolithic archaeological levels of Arbreda Cave (Serinyà, Catalonia, NE Iberian Peninsula).

Materials And Methods: The teeth, two molars (one right dm and one right M) from Level N (older than 120 kyr) and one P from Level J (dated between 71 and 44 kyr), were morphologically described based on microCT images and compared with Neanderthal and Homo sapiens specimens.

Results: The teeth belong to a minimum of three individuals: one adult and one infant from Level N and one juvenile from Level J.

View Article and Find Full Text PDF

European mountain systems have played a crucial role in shaping the distribution of species and of their genetic diversity during the Quaternary climatic changes, with the establishment of allopatric patterns across main mountain ranges. Here we investigated the evolutionary history of flea beetles of the species-group showing an uncommon disjunct biogeographic pattern across the Apennine and the Pyrenees. We applied a multilocus molecular approach and multispecies coalescent models to establish a phylogenetic and systematic framework for this morphologically homogeneous species-group and to estimate the time of main cladogenetic events underlying the origin of the Apennine-Pyrenees pattern.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!