Indium has numerous applications in different industrial sectors and is not an abundant element. Therefore appropriate technology to recover this element from various process wastes is needed. This research reports high adsorption capacity of multiwalled carbon nanotubes (MWCNT) for In(III). The effects of pH, kinetics, isotherms and adsorption mechanism of MWCNT on In(III) adsorption were investigated and discussed in detail. The pH increases improves the adsorption capacity for In(III). The Langmuir adsorption model is the best fit with the experimental data. For the kinetic study, the adsorption onto MWCNT could be fitted to pseudo second-order. The adsorption of indium(III) can be described to a mechanism which consists of a film diffusion controlled process. Metal desorption can be achieved with acidic solutions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2016.04.008 | DOI Listing |
Sci Rep
January 2025
Nano-fabricated Energy Devices Lab, School of Electrical and Computer Eng., University of Tehran, 14395-515, Tehran, Iran.
Core-shell silicon/multiwall carbon nanotubes are one of the most promising anode candidates for further improvement of lithium-ion batteries. Sufficient accommodation for massive volume expansion of silicon during the lithiation process and preventing pulverization and delamination with easy fabrication processes are still critical issues for practical applications. In this study, core-shell silicon/MWCNTs anode materials were synthesized using a facile and controllable PECVD technique to realize aligned MWCNTs followed by a silicon sputtering step.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Materials Science and Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China. Electronic address:
The development of earth-abundant oxygen evolution reaction (OER) electrocatalysts with high activity and durability is critical for replacing noble-metal-based catalysts in the applications of scalable water electrolysis. A freestanding electrode architecture offers significant advantages over conventional coated powder forms due to enhanced kinetics and stability. However, precise control over electrode composition and the construction of uniformly distributed active sites within these electrodes remain challenging.
View Article and Find Full Text PDFFront Chem
January 2025
Department of Mathematics and Statistics, Hazara University, Mansehra, Pakistan.
This study investigates the significance of single-walled (SWCNTs) and multi-walled (MWCNTs) carbon nanotubes with a convectional fluid (water) over a vertical cone under the influences of chemical reaction, magnetic field, thermal radiation and saturated porous media. The impact of heat sources is also examined. Based on the flow assumptions, the fundamental flow equations are modeled as partial differential equations (PDEs).
View Article and Find Full Text PDFLaser ablation propulsion is an important micro-propulsion system for microsatellites. Polymers with carbon added and carbon-based nanomaterial have been demonstrated as propellants with high impulse coupling coefficient (C). Among them, the carbon nanotube film exhibits a low ablation threshold fluence of 25 mJ/cm, which shows its potential for propulsion under low laser fluence.
View Article and Find Full Text PDFPutrescine is a kind of physical diamine that is closely related to food deterioration and food quality safety. This study employs a novel fiber optic biosensor based on S-tapered and waist extension techniques, as well as localized surface plasmon resonance (LSPR), to detect putrescine accurately. The gold nanoparticles (AuNPs) are fixed on the fiber to excite LSPR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!