Aminopeptidases are increasingly being investigated as therapeutic targets in various diseases. In this study, we cloned, expressed, and biochemically characterized a member of the methionine aminopeptidase (MAP) family from Babesia bovis (B. bovis) to develop a potential molecular drug target. Recombinant B. bovis MAP (rBvMAP) was expressed in Escherichia coli (E. coli) as a glutathione S-transferase (GST)-fusion protein, and we found that it was antigenic. An antiserum against the rBvMAP protein was generated in mice, and then a native B. bovis MAP was identified in B. bovis by Western blot assay. Further, an immunolocalization assay showed that MAP is present in the cytoplasm of the B. bovis merozoite. Analysis of the biochemical properties of rBvMAP revealed that it was enzymatically active, with optimum activity at pH 7.5. Enhanced enzymatic activity was observed in the presence of divalent manganese cations and was effectively inhibited by a metal chelator, ethylenediaminetetraacetic acid (EDTA). Moreover, the enzymatic activity of BvMAP was inhibited by amastatin and bestatin as inhibitors of MAP (MAPi) in a dose-dependent manner. Importantly, MAPi was also found to significantly inhibit the growth of Babesia parasites both in vitro and in vivo; additionally, they induced high levels of cytokines and immunoglobulin (IgG) titers in the host. Therefore, our results suggest that BvMAP is a molecular target of amastatin and bestatin, and those inhibitors may be drug candidates for the treatment of babesiosis, though more studies are required to confirm this.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vetpar.2016.02.024DOI Listing

Publication Analysis

Top Keywords

methionine aminopeptidase
8
babesia bovis
8
drug target
8
bovis map
8
enzymatic activity
8
amastatin bestatin
8
bestatin inhibitors
8
bovis
7
map
5
molecular biochemical
4

Similar Publications

Background: Endothelial dysfunction and inflammation have been implicated in the pathophysiology of cerebral small vessel disease (SVD). However, whether they are causal, and if so which components of the pathways represent potential treatment targets, remains uncertain.

Methods: Two-sample Mendelian randomization (MR) was used to test the association between the circulating abundance of 996 proteins involved in endothelial dysfunction and inflammation and SVD.

View Article and Find Full Text PDF

Inhibition of methionine aminopeptidase in C2C12 myoblasts disrupts cell integrity via increasing endoplasmic reticulum stress.

Biochim Biophys Acta Mol Cell Res

January 2025

Designing Future Health Initiative, Center for Promotion of Innovation Strategy, Head Office of Enterprise Partnerships, Tohoku University, Miyagi 980-8579, Japan. Electronic address:

Proteasome-dependent protein degradation and the digestion of peptides by aminopeptidases are essential for myogenesis. Methionine aminopeptidases (MetAPs) are uniquely involved in, both, the proteasomal degradation of proteins and in the regulation of translation (via involvement in post-translational modification). Suppressing MetAP1 and MetAP2 expression inhibits the myogenic differentiation of C2C12 myoblasts.

View Article and Find Full Text PDF

MetAP2 as a Therapeutic Target for Obesity and Type 2 Diabetes: Structural Insights, Mechanistic Roles, and Inhibitor Development.

Biomolecules

December 2024

Department of Biology Education, Daegu University, 201, Daegudae-ro, Gyeongsan-si 38453, Gyeongsangbuk-do, Republic of Korea.

Type 2 Diabetes Mellitus (T2DM) and obesity are globally prevalent metabolic disorders characterized by insulin resistance, impaired glucose metabolism, and excessive adiposity. Methionine aminopeptidase 2 (MetAP2), an intracellular metalloprotease, has emerged as a promising therapeutic target due to its critical role in regulating lipid metabolism, energy balance, and protein synthesis. This review provides a comprehensive analysis of MetAP2, including its structural characteristics, catalytic mechanism, and functional roles in the pathophysiology of T2DM and obesity.

View Article and Find Full Text PDF
Article Synopsis
  • FD is a significant grapevine disease in Europe, particularly affecting Tuscany, where recent surveys found about 50% of tested samples showed positive for the FD phytoplasma (FDp).
  • The study revealed a complex ecology of FDp, with its presence noted in both primary hosts (VV and ST) and secondary vectors (DE) and hosts (AG and CV).
  • Nine different strains of FDp were identified, including three new ones, with phylogenetic analyses indicating links between Tuscan strains and those found in the Balkans and France, which could aid in management efforts to control the disease’s spread.
View Article and Find Full Text PDF

Venous Endothelial Cell Transcriptomic Profiling Implicates METAP1 in Preeclampsia.

Circ Res

January 2025

Cardiovascular Research Center (C.C., P.X., Z.Y., Y.S., E.S.L., J.D.R., M.C.H.), Massachusetts General Hospital, Boston, MA.

Background: Preeclampsia is a hypertensive disorder of pregnancy characterized by systemic endothelial dysfunction. The pathophysiology of preeclampsia remains incompletely understood. This study used human venous endothelial cell (EC) transcriptional profiling to investigate potential novel mechanisms underlying EC dysfunction in preeclampsia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!