Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Unlabelled: Efficient microbial utilization of cellulosic sugars is essential for the economic production of biofuels and chemicals. Although the yeast Saccharomyces cerevisiae is a robust microbial platform widely used in ethanol plants using sugar cane and corn starch in large-scale operations, glucose repression is one of the significant barriers to the efficient fermentation of cellulosic sugar mixtures. A recent study demonstrated that intracellular utilization of cellobiose by engineered yeast expressing a cellobiose transporter (encoded by cdt-1) and an intracellular β-glucosidase (encoded by gh1-1) can alleviate glucose repression, resulting in the simultaneous cofermentation of cellobiose and nonglucose sugars. Here we report enhanced cellobiose fermentation by engineered yeast expressing cdt-1 and gh1-1 through laboratory evolution. When cdt-1 and gh1-1 were integrated into the genome of yeast, the single copy integrant showed a low cellobiose consumption rate. However, cellobiose fermentation rates by engineered yeast increased gradually during serial subcultures on cellobiose. Finally, an evolved strain exhibited a 15-fold-higher cellobiose fermentation rate. To identify the responsible mutations in the evolved strain, genome sequencing was performed. Interestingly, no mutations affecting cellobiose fermentation were identified, but the evolved strain contained 9 copies of cdt-1 and 23 copies of gh1-1 We also traced the copy numbers of cdt-1 and gh1-1 of mixed populations during the serial subcultures. The copy numbers of cdt-1 and gh1-1 in the cultures increased gradually with similar ratios as cellobiose fermentation rates of the cultures increased. These results suggest that the cellobiose assimilation pathway (transport and hydrolysis) might be a rate-limiting step in engineered yeast and copies of genes coding for metabolic enzymes might be amplified in yeast if there is a growth advantage. This study indicates that on-demand gene amplification might be an efficient strategy for yeast metabolic engineering.
Importance: In order to enable rapid and efficient fermentation of cellulosic hydrolysates by engineered yeast, we delve into the limiting factors of cellobiose fermentation by engineered yeast expressing a cellobiose transporter (encoded by cdt-1) and an intracellular β-glucosidase (encoded by gh1-1). Through laboratory evolution, we isolated mutant strains capable of fermenting cellobiose much faster than a parental strain. Genome sequencing of the fast cellobiose-fermenting mutant reveals that there are massive amplifications of cdt-1 and gh1-1 in the yeast genome. We also found positive and quantitative relationships between the rates of cellobiose consumption and the copy numbers of cdt-1 and gh1-1 in the evolved strains. Our results suggest that the cellobiose assimilation pathway (transport and hydrolysis) might be a rate-limiting step for efficient cellobiose fermentation. We demonstrate the feasibility of optimizing not only heterologous metabolic pathways in yeast through laboratory evolution but also on-demand gene amplification in yeast, which can be broadly applicable for metabolic engineering.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4959153 | PMC |
http://dx.doi.org/10.1128/AEM.00410-16 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!