Graphene oxide/chitin nanofibril composite foams as column adsorbents for aqueous pollutants.

Carbohydr Polym

Fujian Provincial Key Laboratory of Polymer Materials, College of Material Science and Engineering, Fujian Normal University, Fujian 350007, China.

Published: June 2016

A novel graphene oxide/chitin nanofibrils (GO-CNF) composite foam as a column adsorbent was prepared for aqueous contaminant disposal. The structures, morphologies and properties of composite foams supported by nanofibrils were characterized. As a special case, the adsorption of methylene blue (MB) on GO-CNF was investigated regarding the static adsorption and column adsorption-desorption tests. Results from equilibrium adsorption isotherms indicated that the adsorption behavior was well-fitted to Langmuir model. The composite foams reinforced by CNF were dimensionally stable during the column adsorption process and could be reused after elution. The removal efficiency of MB was still nearly 90% after 3 cycles. Furthermore, other inorganic or organic pollutants adsorbed by composite foams were also explored. Therefore, this novel composite foam with remarkable properties such as dimensional stability, universal adsorbent for cationic pollutants, high adsorption capacity, and ease of regeneration was a desirable adsorbent in the future practical application of water pollutant treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2016.02.057DOI Listing

Publication Analysis

Top Keywords

composite foams
16
graphene oxide/chitin
8
composite foam
8
composite
6
adsorption
6
oxide/chitin nanofibril
4
nanofibril composite
4
foams
4
column
4
foams column
4

Similar Publications

Gelatin is one of the most widely used food ingredients, with wide applications in the food industry as stabilizing, gelling, and foaming agents. Fish skin is the basic source of gelatin, which contains a high amount of protein. The results show that the proximate compositions (protein, fat, ash, moisture, fiber, carbohydrate, and total energy) of the optimized ice cream product with ingredient compositions of (30% milk, 40% avocado pulp, 10% sugar, 15% gelatin, and 5% cream) show values of 3.

View Article and Find Full Text PDF

In this study, composite biscuits were produced by combining wheat flour (WF) with different proportions of malted pearl millet (MPM) flour (8%, 16%, 24%, and 32%) and orange peel (OP) flour (2%, 4%, 6%, and 8%), using 100% WF as a control. The investigation covered the functional properties, viscosity, and thermal properties of the flours, along with the proximate composition, antioxidant, physical properties, color attributes, and microbial quality of the composite biscuits. As MPM and OP flour (OPF) contents increased, water absorption capacity, dispersibility, and foaming power increased, while the viscosities of both hot and cold pastes decreased.

View Article and Find Full Text PDF

Utilizing MOFs Melt-Foaming to Design Functionalized Carbon Foams for 100% Deep-Discharge and Ultrahigh Capacity Sodium Metal Anodes.

ACS Nano

December 2024

State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.

Meltable metal-organic frameworks (MOFs) offer significant accessibility to chemistry and moldability for developing carbon-based materials. However, the scarcity of low melting point MOFs poses challenges for related design. Here, we propose a MOFs melt-foaming strategy toward Ni single atoms/quantum dots-functionalized carbon foams (NiSA/QD@CFs).

View Article and Find Full Text PDF

Foam-based wound dressing materials produced by dispersing gas phases in a polymeric material are soft, adapt to the body shape, and allow the absorption of wound exudate due to their porous structure. Most of these formulations are based on synthetic substances such as polyurethane. However, biopolymers have entered the field as a new player thanks to their biocompatible and sustainable nature.

View Article and Find Full Text PDF

This study investigated the impact of germination on quinoa protein (QP) composition, techno-functional properties, and the release of antioxidant peptides during gastrointestinal digestion. Germinated QP (GQP) at 36 and 48 h showed significant degradation of storage proteins. GQP12 and GQP24 exhibited increased surface hydrophobicity but decreased solubility, foaming, and emulsifying properties, while that of GQP60 and GQP72 were improved.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!