Gene expression profiling reveals novel protective effects of Aminaphtone on ECV304 endothelial cells.

Eur J Pharmacol

Laboratory of Immunology and Functional Genomics, Centro Cardiologico Monzino IRCCS, Milan, Italy.

Published: July 2016

AI Article Synopsis

  • Aminaphtone significantly affects various vasoactive factors and reduces inflammatory gene expression in endothelial cells exposed to IL-1β.
  • The drug shows a strong ability to down-regulate inflammatory genes, immune response mechanisms, and certain cytokine production, indicating its potential in treating conditions with endothelial dysfunction.
  • Results suggest that Aminaphtone's effects are mediated through interactions with transcription factors, impacting multiple biological processes such as homeostasis and cell signaling.

Article Abstract

Aminaphtone, a drug used in the treatment of chronic venous insufficiency (CVI), showed a remarkable role in the modulation of several vasoactive factors, like endothelin-1 and adhesion molecules. We analysed in vitro the effects of Aminaphtone on whole-genome gene expression and production of different inflammatory proteins. ECV-304 endothelial cells were stimulated with IL-1β 100U/ml in the presence or absence of Aminaphtone 6μg/ml. Gene expression profiles were compared at 1, 3, and 6h after stimulation by microarray. Supernatants of ECV-304 cultures were analysed at 3, 6, 12, and 24h by multiplex ELISA for production of several cytokine and chemokines. Microarrays showed a significant down-regulation at all times of a wide range of inflammatory genes. Aminaphtone appeared also able to modulate the regulation of immune response process (down-regulating cytokine biosynthesis, transcripts involved in lymphocyte differentiation and cell proliferation, and cytokine-cytokine receptor interaction) and to regulate genes engaged in homeostasis, secretion, body fluid levels, response to hypoxia, cell division, and cell-to-cell communication and signalling. Results were confirmed and extended analysing the secretome, which showed significant reduction of the release of 14 cytokines and chemokines. These effects are predicted to be mediated by interaction with different transcription factors. Aminaphtone was able to modulate the expression of inflammatory molecules relevant to the pathogenesis of several conditions in which the endothelial dysfunction is the main player and early event, like scleroderma, lung fibrosis, or atherosclerosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2016.04.018DOI Listing

Publication Analysis

Top Keywords

gene expression
12
effects aminaphtone
8
endothelial cells
8
aminaphtone
6
expression profiling
4
profiling reveals
4
reveals novel
4
novel protective
4
protective effects
4
aminaphtone ecv304
4

Similar Publications

Bone regeneration in sheep model induced by strontium-containing mesoporous bioactive glasses.

Biomater Adv

December 2024

Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28040 Madrid, Spain. Electronic address:

Local delivery of therapeutic ions from bioactive mesoporous glasses (MBGs) is postulated as one of the most promising strategies for regenerative therapy of critical bone defects. Among these ions, Sr cation has been widely considered for this purpose as part of the composition of MBGs. MBGs of chemical composition 75SiO-25-x CaO-5PO-xSrO with x = 0, 2.

View Article and Find Full Text PDF

Here, we present a protocol to alter the production of alternatively spliced mRNA variants, without affecting the overall gene expression, through CRISPR-Cas9-engineered genomic mutations in mice. We describe steps for designing guide RNA to direct Cas9 endonuclease to consensus splice sites, producing transgenic mice through pronuclear injection, and screening for desired mutations in cultured mammalian cells using a minigene splicing reporter. Splice isoform-specific mouse mutants provide valuable tools for genetic analyses beyond loss-of-function and transgenic alleles.

View Article and Find Full Text PDF

Senescence is a tumor suppressor mechanism triggered by oncogene expression and chemotherapy treatment. It orchestrates a definitive cessation of cell proliferation through the activation of the p53-p21 and p16-Rb pathways, coupled with the compaction of proliferative genes within heterochromatin regions. Some cancer cells have the ability to elude this proliferative arrest but the signaling pathways involved in circumventing senescence remain to be characterized.

View Article and Find Full Text PDF

Overexpression of AtbZIP69 in transgenic wheat confers tolerance to nitrogen and drought stress.

Planta

January 2025

State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China.

AtbZIP69 overexpression in wheat significantly enhanced drought and low nitrogen tolerance by modulating ABA synthesis, antioxidant activity, nitrogen allocation, and transporter gene expression, boosting yield. In this study, we generated wheat plants with improved low nitrogen (LN) and drought tolerance by introducing AtbZIP69, a gene encoding a basic leucine zipper domain transcription factor, into the wheat cultivar Shi 4056. AtbZIP69 localized to the nucleus and activated transcription.

View Article and Find Full Text PDF

A common digestive system cancer with a dismal prognosis and a high death rate globally is breast cancer (BRCA). BRCA recurrence, metastasis, and medication resistance are all significantly impacted by cancer stem cells (CSCs). However, the relationship between CSCs and the tumor microenvironment in BRCA individuals remains unknown, and this information is critically needed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!