We wish to retract our research article entitled "Retinoic acid-incorporated glycol chitosan nanoparticles inhibit Ezh2 expression in U118 and U138 human glioma cells" published in Molecular Medicine Reports 12: 6642-6648, 2015. An interested reader noted some anomalies in the presentation of Fig. 4 in our paper, calling into question the validity of the reported data. In examining our original article, we acknowledge that the data for RA (25 µm) did not show a higher density of cells compared with RA (10 µm), as shown in Fig. 4, and therefore Fig. 4 conveyed inaccurate information for the readers. Owing to the importance of these results, which bear significantly upon the conclusions that one may draw from this work, we have decided to withdraw our paper from Molecular Medicine Reports [the original article was published in Molecular Medicine Reports 12: 6642-6648, 2015; DOI: 10.3892/mmr.2015.4294.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4878572PMC
http://dx.doi.org/10.3892/mmr.2016.5130DOI Listing

Publication Analysis

Top Keywords

molecular medicine
12
medicine reports
12
glycol chitosan
8
chitosan nanoparticles
8
nanoparticles inhibit
8
u118 u138
8
u138 human
8
human glioma
8
published molecular
8
reports 6642-6648
8

Similar Publications

Pulmonary hypertension (PH) increases the mortality of preterm infants with bronchopulmonary dysplasia (BPD). There are no curative therapies for this disease. Lung endothelial carnitine palmitoyltransferase 1a (Cpt1a), the rate-limiting enzyme of the carnitine shuttle system, is reduced in a rodent model of BPD.

View Article and Find Full Text PDF

Protocol for detecting eDNA in ecological rare fish using RPA-CRISPR-Cas12a technology.

STAR Protoc

January 2025

School of Public Health, Chongqing Medical University, Chongqing 400016, China; Chongqing Miankai Biotechnology Research Institute Co., Ltd., Chongqing 400025, China. Electronic address:

The recombinase polymerase amplification (RPA)-CRISPR-Cas12a-FQ system enables sensitive detection of environmental DNA (eDNA) in rare fish species. Here, we present a protocol for eDNA amplification and Cas12a for target recognition using RPA. We describe steps for identifying a target site, synthesis and purification of CRISPR RNA (crRNA), and RPA isothermal amplification.

View Article and Find Full Text PDF

Voltage-dependent anion channel 1 (VDAC1) is a key protein in cellular metabolism and apoptosis. Here, we present a protocol to express and purify milligram amounts of recombinant VDAC1 in Escherichia coli. We detail steps for a fluorescence polarization-based high-throughput screening assay using NADH displacement, along with procedures for thermostability, fluorescence polarization, and X-ray crystallography.

View Article and Find Full Text PDF

Polycomb repressive complex 2 (PRC2), composed of the core subunits EED, SUZ12, and either EZH1 or EZH2, is critical for maintaining cellular identity in multicellular organisms. PRC2 deposits H3K27me3, which is thought to recruit the canonical form of PRC1 (cPRC1) to promote gene repression. Here, we show that EZH1-PRC2 and cPRC1 are the primary Polycomb complexes on target genes in non-dividing, quiescent cells.

View Article and Find Full Text PDF

miR-449a/miR-340 reprogram cell identity and metabolism in fusion-negative rhabdomyosarcoma.

Cell Rep

January 2025

Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Histology and Medical Embryology Unit, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy. Electronic address:

Rhabdomyosarcoma (RMS), the most common pediatric soft tissue sarcoma, arises in skeletal muscle and remains in an undifferentiated state due to transcriptional and post-transcriptional regulators. Among its subtypes, fusion-negative RMS (FN-RMS) accounts for the majority of diagnoses in the pediatric population. MicroRNAs (miRNAs) are non-coding RNAs that modulate cell identity via post-transcriptional regulation of messenger RNAs (mRNAs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!