The new ion-exchange oxy-sulfide material has a three-dimensional open framework comprising the pseudo-T4 supertetrahedral [In4Sn16O10S34](12-) cluster. This material has large pores and is a fast ion exchanger. It exhibits high selectivity in sequestering heavy metal ions from aqueous solutions including solutions containing heavy concentrations of sodium, calcium, ammonium, magnesium, zinc, carbonate, phosphate, and acetate ions. Moreover, the ion-exchange efficiency in competitive ion-exchange experiments involving mixtures of metal ions is significantly higher than for solutions of single metal ions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.6b02959DOI Listing

Publication Analysis

Top Keywords

metal ions
12
supertetrahedral [in4sn16o10s34]12-
8
[in4sn16o10s34]12- cluster
8
open-framework oxysulfide
4
oxysulfide based
4
based supertetrahedral
4
cluster efficient
4
efficient sequestration
4
sequestration heavy
4
heavy metals
4

Similar Publications

Scaffolding and Heavy-Atom Effects of Metal Chains Enhanced Tunable Long Persistent Luminescence in Metal-Organic Frameworks.

Inorg Chem

December 2024

Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.

Metal-organic frameworks (MOFs) with long persistent luminescence (LPL) have attracted extensive research attention due to their potential applications in information encryption, anticounterfeiting technology, and security logic. The strategic combinations of organic phosphor linkers and metal ions lead to tremendous frameworks, which could unveil many undiscovered properties of organics. Here, the synthesis and characterization of a three-dimensional MOF (Cd-MOF) is reported, which demonstrates enhanced blue photoluminescence and a phosphorescent lifetime of 124 ms as compared to the pristine linker (HL) under ambient conditions due to the scaffolding and heavy-atom effects of metal chains in the framework.

View Article and Find Full Text PDF

Contamination of water by heavy toxic metal ions such as (e.g., Cr, Mn, Ni, Cu, Zn, As Pb, Cd, and Ag) can lead to serious environmental and human health problems because of their acute and chronic toxicity to the biological system.

View Article and Find Full Text PDF

This study aims to modify raw zeolite with metal oxide nanocomposites to remove nickel (Ni) ions from synthetic wastewater. Novel zeolite-doped magnesium oxide (MgO), iron oxide (FeO), and zinc oxide (ZnO) nanocomposites were synthesized by hydrothermal-calcination methods. The novel zeolite-doped metal oxide nanocomposites were used as adsorbents to remove Ni (II) ions from synthetic wastewater.

View Article and Find Full Text PDF

Crop plants are severely affected by heavy metals (HMs), leading to food scarcity and economical loss. Lead (Pb) is outsourced by use of lead-based fertilizers, batteries, mining, smelting and metal processing. It significantly reduces growth, development and yield of crops cultivated on contaminated sites.

View Article and Find Full Text PDF

Cuproptosis: A new mechanism for anti-tumour therapy.

Pathol Res Pract

December 2024

First Teaching Hospital, Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193,  China; Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.

As an indispensable trace metal element in the organism, copper acts as a key catalytic cofactor in a wide range of biological processes. Copper homeostasis disorders can be caused by either copper excess or deficiency, and copper homeostasis disorders will affect the normal physiological functions of cells and induce cell death through a variety of mechanisms, such as the emerging cuproptosis model. The imbalance of copper homeostasis will lead to the occurrence of cancer, and copper is a key factor in cell signalling, so copper is involved in the development of cancer by promoting cell proliferation, angiogenesis and metastasis, etc.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!