Analysis of the Metabolic and Structural Brain Changes in Patients With Torture-Related Post-Traumatic Stress Disorder (TR-PTSD) Using ¹⁸F-FDG PET and MRI.

Medicine (Baltimore)

From the Institute of Radiology and Nuclear Medicine (SZ, RB, K Hittmair, JH), Hanusch Hospital; Institute of Nuclear Medicine with PET-Center (PK, SM), Wilhelminen Hospital, Teaching Hospital of Medical University of Vienna; Department of Social Psychiatry (TW), Medical University of Vienna, Vienna; and Department of Radiology (K Hergan), Paracelsus Medical University of Salzburg, Salzburg, Austria.

Published: April 2016

Many people exposed to torture later suffer from torture-related post-traumatic stress disorder (TR-PTSD). The aim of this study was to analyze the morphologic and functional brain changes in patients with TR-PTSD using magnetic resonance imaging (MRI) and positron emission tomography (PET). This study evaluated 19 subjects. Thirteen subcortical brain structures were evaluated using FSL software. On the T1-weighted images, normalized brain volumes were measured using SIENAX software. The study compared the volume of the brain and 13 subcortical structures in 9 patients suffering from TR-PTSD after torture and 10 healthy volunteers (HV). Diffusion-weighted imaging (DWI) was performed in the transverse plane. In addition, the 18F-FDG PET data were evaluated to identify the activity of the elected regions. The mean left hippocampal volume for the TR-PTSD group was significantly lower than in the HV group (post hoc test (Bonferroni) P < 0.001). There was a significant difference between the gray matter volume of the patients with TR-PTSD and the HV group (post hoc test (Bonferroni) P < 0.001). The TR-PTSD group showed low significant expansion of the ventricles in contrast to the HV group (post hoc test (Bonferroni) P < 0.001). Diffusion-weighted imaging revealed significant differences in the right frontal lobe and the left occipital lobe between the TR-PTSD and HV group (post hoc test (Bonferroni) P < 0.001). Moderate hypometabolism was noted in the occipital lobe in 6 of the 9 patients with TR-PTSD, in the temporal lobe in 1 of the 9 patients, and in the caudate nucleus in 5 of the 9 patients. In 2 cases, additional hypometabolism was observed in the posterior cingulate cortex and in the parietal and frontal lobes. The findings from this study show that TR-PTSD might have a deleterious influence on a set of specific brain structures. This study also demonstrated that PET combined with MRI is sensitive in detecting possible metabolic and structural brain changes in TR-PTSD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4839854PMC
http://dx.doi.org/10.1097/MD.0000000000003387DOI Listing

Publication Analysis

Top Keywords

brain changes
8
changes patients
8
torture-related post-traumatic
8
post-traumatic stress
8
stress disorder
8
disorder tr-ptsd
8
brain
5
tr-ptsd
5
analysis metabolic
4
metabolic structural
4

Similar Publications

Molecular architecture of the altered cortical complexity in autism.

Mol Autism

January 2025

Human Anatomy Department, Nanjing Medical University, No.101 Longmian Avenue, Jiangning District, Nanjing, 211166, Jiangsu, People's Republic of China.

Autism spectrum disorder (ASD) is characterized by difficulties in social interaction, communication challenges, and repetitive behaviors. Despite extensive research, the molecular mechanisms underlying these neurodevelopmental abnormalities remain elusive. We integrated microscale brain gene expression data with macroscale MRI data from 1829 participants, including individuals with ASD and typically developing controls, from the autism brain imaging data exchange I and II.

View Article and Find Full Text PDF

Depressive symptoms in older adults are associated with changes in stress-related markers, functional connectivity and brain volume.

Alzheimers Res Ther

January 2025

Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, Bd Henri Becquerel, BP 5229, Caen, 14074, France.

Background: Subclinical depressive symptoms increase the risk of developing Alzheimer's disease (AD). The neurobiological mechanisms underlying this link may involve stress system dysfunction, notably related to the hippocampus which is particularly sensitive to AD. We aimed to investigate the links between blood stress markers and changes in brain regions involved in the stress response in older adults with or without subclinical depressive symptoms.

View Article and Find Full Text PDF

Background: Changes in amyloid beta (Aβ) and phosphorylated tau brain levels are known to affect brain network organization but very little is known about how plasma markers can relate to these measures. We aimed to address the relationship between centrality network changes and two plasma pathology markers: phosphorylated tau at threonine 231 (p-tau231), a proxy for early Aβ change, and neurofilament light chain (Nfl), a marker of axonal degeneration.

Methods: One hundred and four cognitively unimpaired individuals were divided into a high pathology load (33 individuals; HP) group and a low pathology (71 individuals; LP) one.

View Article and Find Full Text PDF

Background: Animal systematic reviews are critical to inform translational research. Despite their growing popularity, there is a notable lack of information on their quality, scope, and geographical distribution over time. Addressing this gap is important to maintain their effectiveness in fostering medical advancements.

View Article and Find Full Text PDF

Introduction: Cerebral ischemic strokes cause brain damage, primarily through inflammatory factors. One of the regions most affected by middle cerebral artery occlusion (MCAO) is the hippocampus, specifically the CA1 area, which is highly susceptible to ischemia. Previous studies have demonstrated the anti-inflammatory properties of quercetin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!