A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Silencing of RTKN2 by siRNA suppresses proliferation, and induces G1 arrest and apoptosis in human bladder cancer cells. | LitMetric

Human bladder cancer is the most common urological malignancy in China. One of the causes of carcinogenesis in the cancer may be gene mutation. Therefore, the present study investigated the expression levels of Rhotekin 2 (RTKN2), a Rho effector protein, in human bladder cancer tissues and cell lines, and examined the effect of RTKN2 on the proliferation, cell cycle, apoptosis and invasion of human bladder cancer cell lines. The mRNA expression levels of RTKN2 in 30 human bladder cancer tissue samples were significantly higher, compared with those in 30 normal human bladder tissue samples. The protein expression levels of RTKN2 was markedly higher in T24 and 5637 cells, compared with those in four other human bladder cancer cell lines. The silencing of RTKN2 by small interfering (si)RNA inhibited cell proliferation and arrested cell cycle at the G1 phase, via reducing the expression levels of the MCM10, CDK2, CDC24A and CDC6 cell cycle‑associated proteins in the T24 and 5637 cells. Furthermore, RTKN2 knockdown in the cells led to cell apoptosis and the suppression of invasion. These results suggested that RTKN2 is involved in the carcinogenesis and progression of human bladder cancer, indicating that RTKN2 may be a molecular target in cancer therapy.

Download full-text PDF

Source
http://dx.doi.org/10.3892/mmr.2016.5127DOI Listing

Publication Analysis

Top Keywords

human bladder
28
bladder cancer
28
expression levels
16
cell lines
12
cancer
9
silencing rtkn2
8
bladder
8
rtkn2
8
cell
8
cell cycle
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!