Objectives: Estrogens are known as a potent growth-stimulator of the anterior pituitary cells such as prolactin cells and somatomammotroph cell lines, while glucocorticoids often inhibit cellular proliferation in the pituitary gland as well as in the extra-pituitary tissues. In this study, the involvement of these steroid hormones in the regulation of proliferation was examined in the MtT/S cells, secreting growth hormone (GH).

Design: Effects of estrogens and glucocorticoids were examined in MtT/S cells grown in the medium containing dextran-coated charcoal treated serum. The relative cell density after culture was estimated by the Cell Titer-Glo Luminescent Cell Viability Assay System, and the proliferation rate was determined by the BrdU incorporation method. The mRNA levels were determined by real-time PCR.

Results: Estradiol and the specific agonist for both estrogen receptor (ER) α and ERβ stimulated MtT/S growth at a dose dependent manner. The membrane impermeable estrogen, 17β-estradiol-bovine serum albumin conjugate also stimulated the MtT/S proliferation. The effects of all estrogens were inhibited by an estrogen receptor antagonist, ICI182780. Corticosterone stimulated the proliferation of MtT/S cells at doses lower than 10nM without stimulating GH gene transcription, whereas it did not change the proliferation rate at 1μM. The effects of corticosterone were inhibited by glucocorticoid receptor inhibitor, RU486, but not by the mineralocorticoid receptor antagonist, spironolactone. Both estrogens and glucocorticoids were found to stimulate the proliferation of MtT/S, increasing the mRNA expression of cyclins D1, D3, and E.

Conclusions: The results suggest that estrogens and glucocorticoids may be involved in the mechanisms responsible for the proliferation of GH cells in the course of pituitary development, to maintain the population of GH cells in the adult pituitary gland, and also in the promotion of GH cell tumors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ghir.2016.03.006DOI Listing

Publication Analysis

Top Keywords

mtt/s cells
12
estrogens glucocorticoids
12
proliferation
10
stimulate proliferation
8
mtt/s proliferation
8
growth hormone
8
cells
8
pituitary gland
8
examined mtt/s
8
effects estrogens
8

Similar Publications

Involvement of GPR4 in increased growth hormone and prolactin expressions by extracellular acidification in MtT/S cells.

J Reprod Dev

April 2020

Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Japan.

Hormone-secreting pituitary adenomas show unregulated hormonal hypersecretion and cause hyperpituitarism. However, the mechanism of the unregulated hormone production and secretion has not yet been fully elucidated. Solid tumors show reduced extracellular pH, partly due to lactate secretion from anaerobic glycolysis.

View Article and Find Full Text PDF

Cellular senescence is a stable proliferative arrest state. Pituitary adenomas are frequent and mostly benign, but the mechanism for this remains unknown. IL-6 is involved in pituitary tumor progression and is produced by the tumoral cells.

View Article and Find Full Text PDF

Objectives: Estrogens are known as a potent growth-stimulator of the anterior pituitary cells such as prolactin cells and somatomammotroph cell lines, while glucocorticoids often inhibit cellular proliferation in the pituitary gland as well as in the extra-pituitary tissues. In this study, the involvement of these steroid hormones in the regulation of proliferation was examined in the MtT/S cells, secreting growth hormone (GH).

Design: Effects of estrogens and glucocorticoids were examined in MtT/S cells grown in the medium containing dextran-coated charcoal treated serum.

View Article and Find Full Text PDF

The regulation of transcription of the growth hormone (GH) gene by glucocorticoids was studied in MtT/S cells, a cell line derived from an oestrogen-induced mammotrophic tumour in the rat, and in the primary culture of the anterior pituitary gland of adult mice. The levels of the GH heteronuclear RNA (GH hnRNA), which are mainly determined by the transcription rate, increased by 25-fold during 24 h in response to dexamethasone (DEX; 1 μM) in MtT/S cells that were cultured in the medium containing charcoal-stripped serum for 7 days. The stimulatory effect of DEX on the GH hnRNA levels was detectable as early as 30 min.

View Article and Find Full Text PDF

Both estrogen receptor α and β stimulate pituitary GH gene expression.

Mol Endocrinol

January 2014

Department of Pediatrics (D.A., H.J.N., S.W., C.J.R., S.R.), Division of Endocrinology, and Department of Pediatrics (F.W.), Division of Metabolism, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287; and Research and Development Division (R.K., R.M.L.), Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612.

Although sex steroids have been implicated in the control of mammalian growth, their direct effect on GH synthesis is less clear. The aim of this study was to establish whether estradiol (E2) directly affects GH synthesis in somatotrophs. Somatotroph GH3 and MtT/S cells were used as in vitro models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!