Millisecond Photon Lifetime in a Slow-Light Microcavity.

Phys Rev Lett

FOTON (CNRS-UMR 6082), Université de Rennes I, ENSSAT, 6 rue de Kerampont, CS 80518, 22305 Lannion cedex, France.

Published: April 2016

Optical microcavities with ultralong photon storage times are of central importance for integrated nanophotonics. To date, record quality (Q) factors up to 10^{11} have been measured in millimetric-size single-crystal whispering-gallery-mode (WGM) resonators, and 10^{10} in silica or glass microresonators. We show that, by introducing slow-light effects in an active WGM microresonator, it is possible to enhance the photon lifetime by several orders of magnitude, thus circumventing both fabrication imperfections and residual absorption. The slow-light effect is obtained from coherent population oscillations in an erbium-doped fluoride glass microsphere, producing strong dispersion of the WGM (group index n_{g}∼10^{6}). As a result, a photon lifetime up to 2.5 ms at room temperature has been measured, corresponding to a Q factor of 3×10^{12} at 1530 nm. This system could yield a new type of optical memory microarray with ultralong storage times.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.116.133902DOI Listing

Publication Analysis

Top Keywords

photon lifetime
12
storage times
8
millisecond photon
4
lifetime slow-light
4
slow-light microcavity
4
microcavity optical
4
optical microcavities
4
microcavities ultralong
4
ultralong photon
4
photon storage
4

Similar Publications

Metal halide perovskites have unique luminescent properties that make them an attractive alternative for high quality light-emitting devices. However, the poor stability of perovskites with many defects and the long cycle time for the preparation of perovskite nanocomposites have hindered their production and application. Here, we prepared the perovskite mesostructures by embedding MAPbBr nanocrystals in the mesopores on the surface of silica nanospheres and mixing the nanospheres with silver nanowires and poly(methyl methacrylate) (PMMA), and further explored their optical properties.

View Article and Find Full Text PDF

Faint-light imaging plays an important role in applications including fluorescence-lifetime microscopy and remote sensing. Superconducting nanowire single-photon detectors (SNSPDs) outperform other single-photon detectors in terms of comprehensive performance, however, large-format SNSPD imagers with many pixels remain an outstanding technological challenge. Here, as an alternative route, we use a multimode-fiber-coupled fractal SNSPD as the light-sensing element to perform three-dimensional single-pixel imaging at the wavelength of 1560 nm.

View Article and Find Full Text PDF

Enhanced Efficiency and Stability of Tin Halide Perovskite Solar Cells Through MOF Integration.

Small

January 2025

Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.

Tin halide perovskites are promising candidates for lead-free perovskite solar cells due to their ideal bandgap and high charge-carrier mobility. However, poor crystal quality and rapid degradation in ambient conditions severely limit their stability and practical applications. This study demonstrates that incorporating UiO-66, a zirconium-based MOF, significantly enhances the performance and stability of tin halide perovskite solar cells (TPSCs).

View Article and Find Full Text PDF

Fluorescence imaging has been widely used in fields like (pre)clinical imaging and other domains. With advancements in imaging technology and new fluorescent labels, fluorescence lifetime imaging is gradually gaining recognition. Our research department is developing the CAM, based on the Current-Assisted Photonic Sampler, to achieve real-time fluorescence lifetime imaging in the NIR (700-900 nm) region.

View Article and Find Full Text PDF

Ratiometric lanthanide coordination polymers (Ln-CPs) are advanced materials that combine the unique optical properties of lanthanide ions (e.g., Eu, Tb, Ce) with the structural flexibility and tunability of coordination polymers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!