Complex Path Integrals and Saddles in Two-Dimensional Gauge Theory.

Phys Rev Lett

Institute for Theoretical Physics, Regensburg University, D-93053 Regensburg, Germany.

Published: April 2016

We study numerically the saddle point structure of two-dimensional lattice gauge theory, represented by the Gross-Witten-Wadia unitary matrix model. The saddle points are, in general, complex valued, even though the original integration variables and action are real. We confirm the trans-series and instanton gas structure in the weak-coupling phase, and we identify a new complex-saddle interpretation of nonperturbative effects in the strong-coupling phase. In both phases, eigenvalue tunneling refers to eigenvalues moving off the real interval, into the complex plane, and the weak-to-strong coupling phase transition is driven by saddle condensation.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.116.132001DOI Listing

Publication Analysis

Top Keywords

gauge theory
8
complex path
4
path integrals
4
integrals saddles
4
saddles two-dimensional
4
two-dimensional gauge
4
theory study
4
study numerically
4
numerically saddle
4
saddle point
4

Similar Publications

Strongly Coupled 𝒫𝒯-Symmetric Models in Holography.

Entropy (Basel)

December 2024

Instituto de Física Teórica UAM/CSIC, Campus de Cantoblanco, c/Nicolás Cabrera 13-15, 28049 Madrid, Spain.

Non-Hermitian quantum field theories are a promising tool to study open quantum systems. These theories preserve unitarity if PT symmetry is respected, and in that case, an equivalent Hermitian description exists via the so-called Dyson map. Generically, PT-symmetric non-Hermitian theories can also feature phases where PT symmetry is broken and unitarity is lost.

View Article and Find Full Text PDF

Background: Patient engagement is a critical but challenging public health priority in behavioral health care. During telehealth sessions, health care providers need to rely predominantly on verbal strategies rather than typical nonverbal cues to effectively engage patients. Hence, the typical patient engagement behaviors are now different, and health care provider training on telehealth patient engagement is unavailable or quite limited.

View Article and Find Full Text PDF

Phaseless Auxiliary-Field Quantum Monte Carlo Method for Cavity-QED Matter Systems.

J Chem Theory Comput

January 2025

Center for Computational Quantum Physics, The Flatiron Institute, 162 Fifth Avenue, New York, New York, 10010, United States.

We present a generalization of the phaseless auxiliary-field quantum Monte Carlo (AFQMC) method to cavity quantum-electrodynamical (QED) matter systems. The method can be formulated in both the Coulomb and the dipole gauge. We verify its accuracy by benchmarking calculations on a set of small molecules against full configuration interaction and state-of-the-art QED coupled cluster (QED-CCSD) calculations.

View Article and Find Full Text PDF

Ab initio calculations of electric field gradients (EFGs) in molecular crystals have advanced significantly due to the gauge including projector augmented wave (GIPAW) formalism, which accounts for the infinite periodicity in crystals. However, theoretical accuracies still lag behind experimental ones, making it challenging to distinguish experimentally distinguishable similar structures, a deficiency largely attributed to the limitation of GIPAW codes to generalized gradient approximation (GGA) density functional theory (DFT) functionals. In this study, we investigate whether hybrid DFT functionals can enhance the EFG calculation accuracy and the associated geometry optimization.

View Article and Find Full Text PDF

Environmentally tolerant multifunctional eutectogel for highly sensitive wearable sensors.

Mater Horiz

January 2025

Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China.

Article Synopsis
  • Flexible hydrogel sensors have limitations in sensitivity and freezing in low temperatures, hindering their applications.
  • A new multifunctional eutectogel is developed through photopolymerization, offering properties like high transparency, anti-freezing, and self-healing.
  • This eutectogel shows exceptional performance with a high gauge factor for strain sensitivity, making it promising for flexible electronics in cold conditions.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!