We study numerically the saddle point structure of two-dimensional lattice gauge theory, represented by the Gross-Witten-Wadia unitary matrix model. The saddle points are, in general, complex valued, even though the original integration variables and action are real. We confirm the trans-series and instanton gas structure in the weak-coupling phase, and we identify a new complex-saddle interpretation of nonperturbative effects in the strong-coupling phase. In both phases, eigenvalue tunneling refers to eigenvalues moving off the real interval, into the complex plane, and the weak-to-strong coupling phase transition is driven by saddle condensation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.116.132001 | DOI Listing |
Entropy (Basel)
December 2024
Instituto de Física Teórica UAM/CSIC, Campus de Cantoblanco, c/Nicolás Cabrera 13-15, 28049 Madrid, Spain.
Non-Hermitian quantum field theories are a promising tool to study open quantum systems. These theories preserve unitarity if PT symmetry is respected, and in that case, an equivalent Hermitian description exists via the so-called Dyson map. Generically, PT-symmetric non-Hermitian theories can also feature phases where PT symmetry is broken and unitarity is lost.
View Article and Find Full Text PDFJMIR Form Res
January 2025
Department of Computer Science, Purdue University, West Lafayett, IN, United States.
Background: Patient engagement is a critical but challenging public health priority in behavioral health care. During telehealth sessions, health care providers need to rely predominantly on verbal strategies rather than typical nonverbal cues to effectively engage patients. Hence, the typical patient engagement behaviors are now different, and health care provider training on telehealth patient engagement is unavailable or quite limited.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Center for Computational Quantum Physics, The Flatiron Institute, 162 Fifth Avenue, New York, New York, 10010, United States.
We present a generalization of the phaseless auxiliary-field quantum Monte Carlo (AFQMC) method to cavity quantum-electrodynamical (QED) matter systems. The method can be formulated in both the Coulomb and the dipole gauge. We verify its accuracy by benchmarking calculations on a set of small molecules against full configuration interaction and state-of-the-art QED coupled cluster (QED-CCSD) calculations.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia.
Ab initio calculations of electric field gradients (EFGs) in molecular crystals have advanced significantly due to the gauge including projector augmented wave (GIPAW) formalism, which accounts for the infinite periodicity in crystals. However, theoretical accuracies still lag behind experimental ones, making it challenging to distinguish experimentally distinguishable similar structures, a deficiency largely attributed to the limitation of GIPAW codes to generalized gradient approximation (GGA) density functional theory (DFT) functionals. In this study, we investigate whether hybrid DFT functionals can enhance the EFG calculation accuracy and the associated geometry optimization.
View Article and Find Full Text PDFMater Horiz
January 2025
Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!