We report a STK11 splicing variant comprising a 131-bp insertion that is derived from intron 1, which has previously been reported to possess potent pathogenicity. The same variant was detected in a Peutz-Jeghers syndrome patient harboring a genomic deletion in the vicinity of exon 1 of the STK11 gene, which indicated that this variant was derived from the wild-type allele. We also found the same variant in other normal subjects. This variant corresponds to the predicted transcript variant of STK11 (XM_011528209), which is derived from the genomic sequence of Chr19 (NT_011295.12). Therefore, we concluded that the splicing variant was not pathogenic.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4775769PMC
http://dx.doi.org/10.1038/hgv.2016.2DOI Listing

Publication Analysis

Top Keywords

splicing variant
12
stk11 splicing
8
variant
8
variant normal
8
peutz-jeghers syndrome
8
harboring genomic
8
genomic deletion
8
stk11 gene
8
characterization stk11
4
splicing
4

Similar Publications

ABCA4 Deep Intronic Variants Contributed to Nearly Half of Unsolved Stargardt Cases With a Milder Phenotype.

Invest Ophthalmol Vis Sci

January 2025

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.

Purpose: The purpose of this study was to investigate the contribution and natural progression of ABCA4 deep intronic variants (DIVs) among a Chinese Stargardt disease (STGD) cohort.

Methods: For unsolved STGD probands, DIVs in ABCA4 were detected by next-generation sequencing, and splicing effects were evaluated by in silico tools and validated through minigene experiments. Comprehensive ocular examinations, especially fundus changes, were carried out and analyzed.

View Article and Find Full Text PDF

Case Presentation: A girl aged 2 years and 5 months presented to the hospital with chief complaints of intermittent fever and weakness of the left limb for more than 1 month. The child had transient urticaria appearing on her face for 5 days. The inflammatory biomarkers were significantly increased.

View Article and Find Full Text PDF

Black men suffer disproportionately from prostate cancer (PCa) compared to men of other races and ethnicities. Comparing the molecular landscape of PCa among Black and White patients has the potential to identify targets for development of new precision medicine interventions. Herein, we conducted transcriptomic analysis of prostate tumors and paired tumor-adjacent normals from self-reported Black and White PCa patients and estimated patient genetic ancestry.

View Article and Find Full Text PDF

Dysregulation of genes encoding the homologous to E6AP C-terminus (HECT) E3 ubiquitin ligases has been linked to cancer and structural birth defects. One member of this family, the HECT-domain-containing protein 1 (HECTD1), mediates developmental pathways, including cell signaling, gene expression, and embryogenesis. Through GeneMatcher, we identified 14 unrelated individuals with 15 different variants in HECTD1 (10 missense, 3 frameshift, 1 nonsense, and 1 splicing variant) with neurodevelopmental disorders (NDDs), including autism, attention-deficit/hyperactivity disorder, and epilepsy.

View Article and Find Full Text PDF

Objective: This study aims to improve genetic diagnosis in childhood onset epilepsy with neurodevelopmental problems by utilizing RNA sequencing of fibroblasts to identify pathogenic variants that may be missed by exome sequencing and copy number variation analysis.

Methods: We enrolled 41 individuals with childhood onset epilepsy and neurodevelopmental problems who previously had inconclusive genetic testing. Fibroblast samples were cultured and analyzed using RNA sequencing to detect aberrant expression, aberrant splicing, and monoallelic expression using the Detection of RNA Outlier Pipeline (DROP) pipeline.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!