Iris hypoplasia (IH) is rare autosomal dominant disorder characterized by a poorly developed iris stroma and malformations of the eyes and umbilicus. This disorder is caused by mutation of the paired-like homeodomain 2 (PITX2) gene. Here, we describe a novel PITX2 mutation (c.205C>T) in an IH family presenting with very mild eye features but with tooth agenesis as the most obvious clinical feature.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4785520PMC
http://dx.doi.org/10.1038/hgv.2014.5DOI Listing

Publication Analysis

Top Keywords

novel pitx2
8
pitx2 mutation
8
iris hypoplasia
8
mutation causing
4
causing iris
4
hypoplasia iris
4
hypoplasia rare
4
rare autosomal
4
autosomal dominant
4
dominant disorder
4

Similar Publications

PITX2 expression and Neanderthal introgression in HS3ST3A1 contribute to variation in tooth dimensions in modern humans.

Curr Biol

January 2025

Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, 825 Zhangheng Road, Pudong District, Shanghai 200433, China; Aix-Marseille Université, CNRS, EFS, ADES, 27 Boulevard Jean Moulin, Marseille 13005, France; Department of Genetics, Evolution and Environment, and UCL Genetics Institute, University College London, Gower Street, London WC1E 6BT, UK. Electronic address:

Dental morphology varies greatly throughout evolution, including in the human lineage, but little is known about the biology of this variation. Here, we use multiomics analyses to examine the genetics of variation in tooth crown dimensions. In a human cohort with mixed continental ancestry, we detected genome-wide significant associations at 18 genome regions.

View Article and Find Full Text PDF

Deletion of exon 4 of the in a child with Axenfeld-Rieger syndrome.

Ophthalmic Genet

December 2024

Department of Medical, Shanghai Fujungenetics Biotechnology Co., Ltd., Shanghai, China.

Article Synopsis
  • - Axenfeld-Rieger syndrome (ARS) is a genetic disorder with eye and systemic symptoms, showing variability among patients; this study presents two cases (a boy and his mother) with a new genetic variant linked to ARS.
  • - The proband, a 3-month-old boy, exhibited several abnormalities including eye development issues, skin and dental problems, and a heart condition, while his mother has been blind since age 12; genetic testing revealed a specific deletion in their DNA.
  • - The findings indicate that this deletion leads to ARS phenotype type I, highlighting that certain genetic mutations in the affected gene are common causes of the disorder, thus improving understanding of ARS manifestations.
View Article and Find Full Text PDF
Article Synopsis
  • The study explores the genetic relationship between atrial fibrillation (AF) and sinus node dysfunction (SND), revealing a strong genetic correlation between the two.
  • The researchers identified shared genetic loci and two novel genes, ENPEP and PITX2, that contribute to both conditions.
  • Using various genetic analysis methods, they concluded that AF significantly increases the risk of SND, establishing important insights into their causal relationship.
View Article and Find Full Text PDF

Obesity is linked to an increased risk of atrial fibrillation (AF) via increased oxidative stress. While NADPH oxidase 2 (NOX2), a major source of oxidative stress and reactive oxygen species (ROS) in the heart, predisposes to AF, the underlying mechanisms remain unclear. Here, we studied NOX2-mediated ROS production in obesity-mediated AF using Nox2-knockout mice and mature human induced pluripotent stem cell-derived atrial cardiomyocytes (hiPSC-aCMs).

View Article and Find Full Text PDF

Congenital anterior segment ocular disorders: Genotype-phenotype correlations and emerging novel mechanisms.

Prog Retin Eye Res

September 2024

Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA; Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin and Children's Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA. Electronic address:

Development of the anterior segment of the eye requires reciprocal sequential interactions between the arising tissues, facilitated by numerous genetic factors. Disruption of any of these processes results in congenital anomalies in the affected tissue(s) leading to anterior segment disorders (ASD) including aniridia, Axenfeld-Rieger anomaly, congenital corneal opacities (Peters anomaly, cornea plana, congenital primary aphakia), and primary congenital glaucoma. Current understanding of the genetic factors involved in ASD remains incomplete, with approximately 50% overall receiving a genetic diagnosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!