P-wave dispersion: What we know till now?

JRSM Cardiovasc Dis

Department of Cardiology, Memorial Ankara Hospital, Ankara, Turkey.

Published: April 2016

P-wave dispersion is defined as the difference between the maximum and the minimum P-wave duration recorded from multiple different-surface ECG leads. It has been known that increased P-wave duration and P-wave dispersion reflect prolongation of intraatrial and interatrial conduction time and the inhomogeneous propagation of sinus impulses, which are well-known electrophysiologic characteristics in patients with atrial arrhythmias and especially paroxysmal atrial fibrillation. Extensive clinical evaluation of P-wave dispersion has been performed in the assessment of the risk for atrial fibrillation in patients without apparent heart disease, in hypertensives, in patients with coronary artery disease, in patients undergoing coronary artery bypass surgery, in patients with congenital heart diseases, as well as in other groups of patients suffering from various cardiac or non-cardiac diseases. In this paper, we aimed to summarize the measurement methods, current use in different clinical situations, strengths and limitations of the of P-wave dispersion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4814939PMC
http://dx.doi.org/10.1177/2048004016639443DOI Listing

Publication Analysis

Top Keywords

p-wave dispersion
20
p-wave duration
8
atrial fibrillation
8
coronary artery
8
p-wave
7
patients
6
dispersion till
4
till now?
4
now? p-wave
4
dispersion
4

Similar Publications

A Nomogram utilizing ECG P-wave parameters to predict recurrence risk following catheter ablation in paroxysmal atrial fibrillation.

J Cardiothorac Surg

January 2025

Department of Cardiology, Fujian Medical University Union Hospital, Fujian Heart Medical Center, Fujian Institute of Coronary Heart Disease, Fujian Clinical Medical Research Center for Heart and Macrovascular Disease, Fuzhou, 350001, China.

Objective: The objective of this study is to assess the predictive utility of perioperative P-wave parameters in patients with paroxysmal atrial fibrillation (PAF) undergoing catheter ablation, and to develop a predictive model using these parameters.

Methods: A total of 213 patients with PAF undergoing catheter ablation were retrospectively analyzed. P-wave parameters were measured within 3 days preoperatively and on the day postoperatively to determine their predictive significance for postoperative PAF recurrence.

View Article and Find Full Text PDF

Cardiac Implications in Dravet Syndrome: Can Electrocardiogram and Echocardiography Detect Hidden Risks?

Pediatr Neurol

January 2025

Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; Pediatrics Research Group, Institut de Recerca Sant Pau (IR-Sant Pau), Barcelona, Spain; Pediatric Neurology Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.

Background: Dravet syndrome (DS) is a severe developmental and epileptic encephalopathy associated with loss-of-function variants in the SCN1A gene. Although predominantly expressed in the central nervous system, SCN1A is also expressed in the heart, suggesting a potential link between neuronal and cardiac channelopathies. Additionally, DS carries a high risk of sudden unexpected death in epilepsy (SUDEP).

View Article and Find Full Text PDF

Background/objectives: Autoimmune inflammation enhances the electrical instability of the atrial myocardium in patients with systemic sclerosis (SSc); thus, atrial arrhythmia risk is increased, which might be predicted by evaluating the P wave interval and dispersion of a 12-lead surface electrocardiogram (ECG).

Methods: We examined 26 SSc patients and 36 healthy controls and measured the P wave interval and P wave dispersion of the 12-lead surface ECG in each patient. Furthermore, echocardiography and 24-h Holter ECG were performed and levels of inflammatory laboratory parameters, including serum progranulin (PGRN), sVCAM-1, sICAM-1, leptin and C-reactive protein (CRP), were determined.

View Article and Find Full Text PDF

Differential diagnostic value of P wave dispersion and QT interval dispersion between psychogenic pseudosyncope and vasovagal syncope in children and adolescents.

Ital J Pediatr

January 2025

Department of Pediatric Cardiovasology, Children's Medical Center, The Second Xiangya Hospital, Central South University, No.139 Renmin Middle Road, Changsha, 410011, Hunan, China.

Background: Both psychogenic pseudosyncope (PPS) and vasovagal syncope (VVS) in children and adolescents are diseases of transient loss of consciousness. It is difficult to distinguish them clinically. This paper will study the differential diagnostic value of P wave dispersion (Pd) and QT interval dispersion (QTd) between PPS and VVS.

View Article and Find Full Text PDF

Subclavian Ansae Stimulation on Cardiac Hemodynamics and Electrophysiology in Atrial Fibrillation: A Target for Sympathetic Neuromodulation.

JACC Clin Electrophysiol

December 2024

St Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom; William Harvey Research Institute, Queen Mary University of London, London, United Kingdom. Electronic address:

Background: The sympathetic autonomic nervous system plays a major role in arrhythmia development and maintenance. Historical preclinical studies describe preferential increases in cardiac sympathetic tone upon selective stimulation of the subclavian ansae (SA), a nerve cord encircling the subclavian artery.

Objectives: This study sought to define, for the first time, the functional anatomy and physiology of the SA in humans using a percutaneous approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!