The inability to generate a voiding contraction sufficient to allow efficient bladder emptying within a reasonable time frame is a common problem seen in urological practice. Typically, the symptoms that arise are voiding symptoms, such as weak and slow urinary flow. These symptoms can cause considerable bother to patients and impact upon quality of life. The urodynamic finding of inadequate detrusor contraction has been termed detrusor underactivity (DUA). Although a definition is available for this entity, there are no widely accepted diagnostic criteria. Drawing parallels to detrusor overactivity and the overactive bladder, the symptoms arising from DUA have been referred to as the "underactive bladder" (UAB), while attempts to crystallize the definition of UAB are now ongoing. In this article, we review the contemporary literature pertaining to the epidemiology and etiopathogenesis of DUA as well as discuss the definitional aspects that are currently under consideration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4815614PMC
http://dx.doi.org/10.12688/f1000research.7344.1DOI Listing

Publication Analysis

Top Keywords

underactive bladder
4
bladder detection
4
detection diagnosis
4
diagnosis inability
4
inability generate
4
generate voiding
4
voiding contraction
4
contraction sufficient
4
sufficient allow
4
allow efficient
4

Similar Publications

CUOB (co-existent underactive overactive bladder) syndrome is a clinical entity that embraces storage and emptying symptoms, not strictly correlated with urodynamic findings. We assessed the differences between patients diagnosed with CUOB with/without cystocele. The study group was allocated from 2000 women who underwent urodynamic studies between 2008 and 2016.

View Article and Find Full Text PDF

Aims: To answer the question of whether the bladder itself can to any extent control or modulate the initiation of voiding.

Methods: This subject was discussed at the International Consultation on Incontinence-Research Society (ICI-RS) 2024 conference in Bristol, UK in a proposal session.

Results: Cells in the bladder wall sense the local environment via a diverse array of ion channels and receptors which together provide input to motor-sensory and signal transduction mechanisms.

View Article and Find Full Text PDF

This study aimed to improve machine learning models for diagnosing interstitial cystitis/bladder pain syndrome (IC/BPS) by comparing classical machine learning methods with newer AutoML approaches, utilizing biomarker data and patient-reported outcomes as features. We applied various machine learning techniques to biomarker data from the previous IP4IC and ICRS studies to predict the presence of IC/BPS, a disorder impacting the urinary bladder. Data were sourced from two nationwide, crowd-sourced collections of urine samples involving 2009 participants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!