A modified one-pot Sonogashira cross-coupling reaction based on a copper-free methodology has been applied for the synthesis of conjugated microporous poly(aryleneethynylene) networks (CMPs) from readily available iodoarylenes and 1,3,5-triethynylbenzene. The polymerization reactions were carried out by using equimolar amounts of halogen and terminal alkyne moieties with extremely small loadings of palladium catalyst as low as 0.65 mol %. For the first time, CMPs with rigorously controlled structures were obtained without any indications of side reactions, as proven by FTIR and solid-state NMR spectroscopy, while showing Brunauer-Emmett-Teller (BET) surface areas higher than any poly(aryleneethynylene) network reported before, reaching up to 2552 m(2)  g(-1) .

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201600783DOI Listing

Publication Analysis

Top Keywords

conjugated microporous
8
microporous polyaryleneethynylene
8
polyaryleneethynylene networks
8
copper-free sonogashira
4
sonogashira coupling
4
coupling high-surface-area
4
high-surface-area conjugated
4
networks modified
4
modified one-pot
4
one-pot sonogashira
4

Similar Publications

Conjugated Microporous Polymer-Based Fluorescent Probe for Selective Detection of Nitro-explosives and Metal Nitrates.

ACS Appl Mater Interfaces

January 2025

School of Chemistry & Chemical Engineering, Henan University of Science and Technology, Luoyang, Henan 471023, People's Republic of China.

The sensitive and selective identification of nitroaromatic explosives and industrially ubiquitous nitrates, which are harmful to the environment, is crucial from the viewpoints of security and environmental remediation. New multifunctional fluorescent porous materials that can sense nitro-explosives and nitrates are under continuous development. To this end, this study synthesizes 3,10,15-/-3,10,16-tribromotrinaphtho[3.

View Article and Find Full Text PDF

Sulfonamide antibiotics have a broad spectrum of antibacterial action and are widely used, but their overuse poses a threat to human health. In this study, a three-dimensional conjugated microporous polymer, which was designated as TPM-CMP, was synthesized via Friedel-Crafts reaction by using tetraphenylmethane (TPM) and biphenyl dichlorobenzene as monomers, and it was utilized as an adsorbent in solid-phase extraction (SPE) of sulfonamides. The TPM-CMP demonstrated high extraction efficiency for sulfonamides due to π-stacking interactions, hydrophobic forces, and pore-filling effects.

View Article and Find Full Text PDF

Enhanced Conductivity in Conjugated Microporous Polymers via Integrating of Carbon Nanotubes for Ultrasensitive NO Chemiresistive Sensor.

Small

December 2024

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.

Conjugated microporous polymers (CMPs) present high promise for chemiresistive gas sensing owing to their inherent porosities, high surface areas, and tunable semiconducting properties. However, the poor conductivity hinders their widespread application in chemiresistive sensing. In this work, three typical CMPs (PSATA, PSATB, and PSATT) are synthesized and their chemiresistive gas sensing performance is investigated for the first time.

View Article and Find Full Text PDF

Acid Catalysis Mediated by Aqueous Hydronium Ions Formed by Contacting Zeolite Crystals with Liquid Water.

J Am Chem Soc

December 2024

Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

Zeolites are crystalline microporous aluminosilicates widely used as solid acids in catalytic routes to clean and sustainable energy carriers and chemicals from biogenic and fossil feedstocks. This study addresses how zeolites act as weak polyprotic acids and dissociate to form extra-crystalline hydronium (HO) ions in liquid water. The extent of their dissociation depends on the energy required to form the conjugate framework anions, which becomes unfavorable as the extent of dissociation increases intracrystalline charge densities because repulsive interactions ultimately preclude the detachment of all protons as catalytically relevant HO(aq) ions.

View Article and Find Full Text PDF

Fluorinated Conjugated Microporous Polymers Based on Pillar[]arenes for Removal of Water Pollutants and Their Cation Selective Adsorption.

ACS Appl Mater Interfaces

December 2024

Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.

Article Synopsis
  • Organic dyes are widely used but their leakage into the environment is a global issue due to toxicity and nonbiodegradability, prompting the need for effective removal technologies.
  • This article discusses the synthesis of highly fluorinated conjugated microporous polymers that show promising adsorption properties, with a surface area of up to 1063 m²/g for removing cationic organic dyes from water.
  • The fluorinated polymers demonstrate a strong adsorption capacity of 313 mg/g for crystal violet, outperforming traditional adsorbents and also function as proton channels in lipid membranes.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!