Background: The utility of molecules derived from cancer cells as biomarkers of the pathological status in biliary tract and pancreatic cancers is still limited. Soluble LDL receptor relative with 11 ligand-binding repeats (sLR11), a molecule released from immature cells, has been shown to be a circulating biomarker for early stage hematological malignancies.

Methods: We have evaluated the pathological significance of bile sLR11 levels in 147 samples from 72 patients with biliary tract cancer (BTC), pancreatic cancer (PC), or benign diseases.

Results: The bile sLR11 levels in the cancer patients were significantly increased compared with those in patients without cancer, independent of cytological detection of cancer cells in bile. The average bile sLR11 levels in cancer patients were significantly higher than in those with benign diseases, while levels of bile carbohydrate antigen 19-9 (CA19-9) and carcinoembryonic antigen (CEA) were not different. LR11 protein was found to be highly expressed in the BTC and PC cells. The LR11 transcript levels in cholangiocarcinoma and pancreatic cancer cell lines were sharply induced during proliferation and significantly increased under hypoxic conditions.

Conclusions: Therefore, sLR11 levels in bile may be indicative of cancer cell conditions and may serve as potential novel biomarker in patients with BTC and PC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cca.2016.04.010DOI Listing

Publication Analysis

Top Keywords

slr11 levels
16
biliary tract
12
bile slr11
12
cancer
9
patients biliary
8
tract pancreatic
8
pancreatic cancers
8
cancer cells
8
pancreatic cancer
8
levels cancer
8

Similar Publications

Objective We previously reported that patients with acute leukemia and malignant lymphoma (ML) demonstrated significantly increased serum soluble LR11 (sLR11) levels compared to normal controls. Accurately diagnosing ML of the central nervous system (CNS ML) using cytology is frequently difficult. Therefore, we evaluated the use of cerebrospinal fluid (CSF) sLR11 and soluble interleukin-2 receptor (sIL-2R) as diagnostic and treatment response markers for CNS ML.

View Article and Find Full Text PDF

Background: Heart failure is a severe condition often involving pulmonary hypertension (PH). Soluble low-density lipoprotein receptor with 11 ligand-binding repeats (sLR11) has been associated with pulmonary artery hypertension. We examined whether sLR11 correlates with PH in left heart disease and can be used as a predictive marker.

View Article and Find Full Text PDF

Background: Intimal smooth muscle cells (SMCs) play an important role in the vasculitis caused by Kawasaki disease (KD). Lipoprotein receptor 11 (LR11) is a member of the low-density lipoprotein receptor family, which is expressed markedly in intimal vascular SMCs and secreted in a soluble form (sLR11). sLR11 has been recently identified as a potential vascular lesion biomarker.

View Article and Find Full Text PDF

Background: Pre-eclampsia is a pregnancy-specific disease characterized by onset of hypertension and proteinuria, sometimes progressing into damaging other organs. Here, we investigated the pathological significance of the soluble fragment of LR11 (sLR11), a cell differentiation regulator, in comparison to circulating IL-6 and TNF-α, in pre-eclampsia.

Methods: The study was conducted in a cross-sectional research design with fourteen pre-eclampsia patients and fifty healthy pregnant subjects.

View Article and Find Full Text PDF

Background: The levels of plasma sLR11, released from intimal SMCs, are positively associated with intima-media thickness (IMT) in asymptomatic subjects. We have evaluated the yet unknown pathological significance of sLR11 for plaque conditions in patients with carotid artery stenosis.

Methods: The presence of LR11 in carotid plaques was investigated using autopsy specimens.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!