Field surveys and laboratory analysis were carried out in Chagan Lake and Xinlicheng Reservoir under different salinity conditions in September 2012. In the laboratory, the absorption coefficients of particulates and chromophoric dissolved organic matter (CDOM) were measured, aiming to compare the absorption features, source of optical active substances and relative contribution of optical active constituents over the range of PAR (400-700 nm) in Chagan Lake and Xinlicheng Reservoir. The results showed that the Chagan Lake and Xinlicheng Reservoir were water bodies with medium eutrophication in autumn by TAL nutrient index and the absorption spectra of particulates matters were similar to those of phytoplankton. For the Chagan Lake with high salinity( EC = 988. 87 micro S x cm(-1)), the total particulate absorption was dominated by the nonalgal particles, and the contribution rate was in the order of nonalgal particles > phytoplankton > CDOM. For the Xinlicheng Reservoir with low salinity (EC = 311.67 microS x -cm(-1)), the total particulate absorption was dominated by the phytoplankton, and the contribution rate was ranked as phytoplankton > nonalgal particles > CDOM. Positive correlation was observed between a(p) (440), a(p) (675), a(d) (440) and total suspended matter (TSM), inorganic suspended matter (ISM), organic suspended matter (OSM) and Chl-a respectively in Chagan Lake, with correlation coefficients all above 0.55. Positive correlation was observed between a(p)(440), a(p) (675) and Chl-a (0.77 and 0.85, P < 0.05) , so did a(d) (440) and ISM (0.74, P < 0.01), while negative correlation was observed between a(p) (440) and OSM in the Xinlicheng Reservoir. In terms of Chagan Lake, negative correlation was merely observed between a(g) (440) and OSM (-0.54, P < 0.05) , but not in the Xinlicheng Reservoir. Both Sg, which was calculated by the fitting absorption curve from 250 to 400 nm, and relative molecular weight M showed that Sg[ (0.021 +/- 0.001) m(-1)] in Chagan Lake was greater than that in the Xinlicheng Reservoir [(0.0176 +/- 0.001) m(-1)], and Mr, in Chagan Lake was 11.44 +/- 2.00 (7.5-15.09), which was greater than that in Xinlicheng Reservoir 7.53 +/- 0.79 (6.17-8.89), indicating that the relative molecular weight of CDOM in the Chagan Lake was less than that in the Xinlicheng Reservoir. The Chagan Lake was greatly affected by wind speed and shore collapse to produce suspended mineral and sediment particles. Thereby the total particulate absorption was dominated by the nonalgal particles. The waters in the Xinlicheng Reservoir were greatly impacted by terrestrial inorganic matter, and the growth of phytoplankton was weakened and microbes activities were strengthened simultaneously, which led to the negative correlations between a(g)(lamda) and OSM.
Download full-text PDF |
Source |
---|
Environ Geochem Health
November 2024
Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China.
Acta Trop
October 2024
Jilin Provincial Academy of Forestry Sciences, Changchun, 130117, China. Electronic address:
Migratory birds play an important role in the cross-regional transmission of zoonotic pathogens. Assessing the presence of zoonotic pathogens carried by migratory birds is critical for disease control. However, information about Blastocystis infection in the migratory birds is very limited.
View Article and Find Full Text PDFWater Res
October 2024
State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China. Electronic address:
Nutrient proportion, light intensity, and temperature affect the succession of dominant phytoplankton species. Despite these insights, this transformation mechanism in highly turbid lakes remains a research gap, especially in response to climate change. To fill this gap, we investigated the mechanism by which multi-environmental factors influence the succession of dominant phytoplankton species in Lake Chagan.
View Article and Find Full Text PDFEcotoxicol Environ Saf
November 2023
Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China; Key Laboratory of Low‑Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China. Electronic address:
Magnetotactic bacteria (MTB) can rapidly relocate to optimal habitats by magnetotaxis, and play an important role in iron biogeochemical cycling. This study aimed to evaluate the contribution of the external magnetostatic field to the diversity of MTB in freshwater sediments from Yangtze River (Changjiang River, CJ), Chagan Lake (CGH) and Zhalong Wetland (ZL). The magnetic field intensity was tightly associated with the community richness of MTB in CJ, whereas it was closely related to the diversity of MTB in CGH and ZL (p < 0.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
November 2023
Jilin Chagan Lake National Nature Reserve Administration, Songyuan, 138000, Jilin, China.
Lake eutrophication, exacerbated by high-intensity anthropogenic forcing, threatens water ecological security and the sustainable development of fisheries. Accurately evaluating lake eutrophication is the basis for effective management of the water environment. This study aimed to study eutrophication and its anthropogenic forcing in Chagan Lake, which is surrounded by agricultural areas with irrigation discharge as the primary water source.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!