Vehicle emission is one of the primary factors affecting the quality of atmospheric environment in Beijing. In order to improve the air quality during APEC conference, strict control measures including vehicle emission control were taken in Beijing during APEC meeting. Based on the activity level data of traffic volume, vehicle speed and vehicle types, the inventory of motor vehicle emissions in Beijing was developed following bottom-up methodology to assess the effectiveness of the control measures. The results showed that the traffic volume of Beijing road network during the APEC meeting decreased significantly, the vehicle speed increased obviously, and the largest decline of traffic volume was car. CO, NOx, HC and PM emissions of vehicle exhaust were reduced by 15.1%, 22.4%, 18.4% and 21.8% for freeways, 29.9%, 36.4%, 32.7% and 35.8% for major arterial, 35.7%, 41.7%, 38.4% and 41.2% for minor arterial, 40.8%, 46.5%, 43.1% and 46.0% for collectors, respectively. The vehicles exhaust emissions inventory before and during APEC conference was developed based on bottom-up emissions inventory method. The results indicated that CO, NOx, HC and PM emissions of vehicle exhaust were reduced by 37.5%, 43.4%, 39.9% and 42.9% in the study area, respectively.

Download full-text PDF

Source

Publication Analysis

Top Keywords

vehicle exhaust
12
control measures
12
apec conference
12
traffic volume
12
vehicle
9
emission control
8
vehicle emission
8
apec meeting
8
vehicle speed
8
nox emissions
8

Similar Publications

Background: Billions of dollars have been spent implementing regulations to reduce traffic-related air pollution (TRAP) from exhaust pipe emissions. However, few health studies have evaluated the change in TRAP emissions and associations with infant health outcomes. We hypothesize that the magnitude of association between vehicle exposure measures and adverse birth outcomes has decreased over time, parallelling regulatory improvements in exhaust pipe emissions.

View Article and Find Full Text PDF

Synthesis of Ru-W/CeZrO catalyst with superior NH-SCO performance: Synergy between Ru and W species.

J Hazard Mater

January 2025

State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.

Ammonia selective catalytic oxidation (NH-SCO) is an effective method for NH removal. However, it is still a great challenge to develop catalysts with a wide operating temperature window, high catalytic activity and N selectivity, particularly for the removal of high-concentration NH from NH-fueled engine exhaust gas. Herein, a small amount of Ru (0.

View Article and Find Full Text PDF

The content of 39 metals and metalloids (MMs) in submicron road dust (PM fraction) was studied in the traffic zone, residential courtyards with parking lots, and on pedestrian roads in parks in Moscow. The geochemical profiles of PM vary slightly between different types of roads and courtyards but differ significantly from those in parks. In Moscow, compared to other cities worldwide, submicron road dust contains less As, Sb, Mo, Cr, Cd, Sn, Tl, Ca, Rb, La, Y, U, but more Cu, Zn, Co, Fe, Mn, Ti, Zr, Al, V.

View Article and Find Full Text PDF

Real-World Particle Emissions from a Modern Heavy-Duty Diesel Vehicle during Normal Operation and DPF Regeneration Events: Impacts on Disadvantaged Communities.

Environ Sci Technol

January 2025

Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California, 1084 Columbia Avenue, Riverside, California 92507, United States.

We assessed the real-world particulate emissions of a goods movement diesel vehicle, with an emphasis on total particle number and solid particle number emissions at different cutoff sizes. The vehicle was tested on routes in the South Coast Air Basin (SCAB) of California, representative of typical goods movement operation between the ports to warehouses and logistic centers with a mixture of urban and highway driving, as well as elevation change. We evaluated emissions during normal vehicle operation and diesel particulate filter (DPF) active regeneration events.

View Article and Find Full Text PDF

Integrated hepatic transcriptomics and metabolomics identify Pck1 as a key factor in the broad dysregulation induced by vehicle pollutants.

Part Fibre Toxicol

December 2024

Division of Cardiology, David Geffen School of Medicine, University of California-Los Angeles, 10833 Le Conte Avenue, CHS 43-264, P.O. Box 951679, Los Angeles, CA, 90095, USA.

Background: Exposure to air pollution is associated with worldwide morbidity and mortality. Diesel exhaust (DE) emissions are important contributors which induce vascular inflammation and metabolic disturbances by unknown mechanisms. We aimed to determine molecular pathways activated by DE in the liver that could be responsible for its cardiometabolic toxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!