Targeting type-2 cannabinoid receptor (CB2) is considered a feasible strategy to develop new drugs for the treatment of diseases like neuropathic pain, chronic inflammation, neurodegenerative disorders and cancer. Such drugs are devoid of the undesired central side effects that are typically mediated by the CB1 receptor. In this work we synthesized 18 biphenylic carboxamides as new CB2-selective ligands and evaluated their pharmacological profiles. The functional activity of these compounds is strongly influenced by the nature of the substituent at position 4' and 5 of the biphenyl scaffold. Position 5 seems to be responsible for the agonist or inverse agonist behaviour independently of the substituent in position 4', with the exception of the methoxyl group which transforms both full agonists and inverse agonists into neutral antagonists. This study provides a novel complete toolbox of CB2 functional modulators that derive from the same chemical scaffold. Such probes may be useful to investigate the biological role of CB2 receptors in cellular assays.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2016.03.072DOI Listing

Publication Analysis

Top Keywords

substituent position
8
synthesis pharmacological
4
pharmacological evaluation
4
evaluation biphenylic
4
biphenylic derivatives
4
cb2
4
derivatives cb2
4
cb2 receptor
4
receptor ligands
4
ligands targeting
4

Similar Publications

Ultrasound-assisted and Efficient Multicomponent Synthesis of 4H-Pyran Derivatives catalyzed by LiOH.H2O in Water.

Curr Org Synth

January 2025

Laboratoire de Chimie Organique (LR17ES08), Faculté des Sciences de Sfax, University of Sfax, Route de Soukra Km 3.5, BP 1171, 3000, Sfax, Tunisia.

Aim And Objective: It is well established that 4H-pyran derivatives hold a significant position in synthetic organic chemistry due to their diverse biological and pharmacological properties. This work aims to introduce a novel synthetic pathway for highly functionalized 4H-pyran derivatives, achieved through a 1,4-Michael addition followed by a cascade cyclization. This reaction is catalyzed by LiOH·H2O under ultrasonic irradiation in water, offering an efficient and environmentally friendly approach.

View Article and Find Full Text PDF

Diabetes mellitus, particularly type 2 diabetes, is a growing global health challenge characterized by chronic hyperglycemia due to insulin resistance. One therapeutic approach to managing this condition is the inhibition of α-glucosidase, an enzyme involved in carbohydrate digestion, to reduce postprandial blood glucose levels. In this study, a series of thiosemicarbazide-linked quinoline-piperazine derivatives were synthesized and evaluated for their α-glucosidase inhibitory activity, to identify new agents for type 2 diabetes management.

View Article and Find Full Text PDF

This paper presents the results of quantum-chemical modeling performed by the Density Functional-Based Tight Binding (DFTB) method to investigate the change in the band structure of hybrid materials based on carbon nanotubes and unsubstituted, tetra-, or octa-halogen-substituted zinc phthalocyanines upon the adsorption of ammonia molecules. The study showed that the electrical conductivity of these materials and its changes in the case of interaction with ammonia molecules depend on the position of the impurity band formed by the orbitals of macrocycle atoms relative to the forbidden energy gap of the hybrids. The sensor response of the hybrids containing halogenated phthalocyanines was lower by one or two orders of magnitude, depending on the number of substituents, compared to the hybrid with unsubstituted zinc phthalocyanine.

View Article and Find Full Text PDF

This study examines the influence of ligand design on the structural, optical, and electrical properties of copper-based coordination complexes. Ligands HL and HL were synthesized via the reaction of 5-nitrosalicylaldehyde with 2-hydroxy- or 4-hydroxybenzhydrazide. HL was obtained from the reaction of carbohydrazide and salicylaldehyde, while HL was prepared by condensing 4-methoxysalicylaldehyde with thiocarbohydrazide.

View Article and Find Full Text PDF

The serine/threonine kinase CK2 (formerly known as casein kinase II) plays a crucial role in various CNS disorders and is highly expressed in various types of cancer. Therefore, inhibiting this key kinase could be promising for the treatment of these diseases. The CK2 holoenzyme is formed by the recruitment of two catalytically active CK2α and/or CK2α' subunits by a regulatory CK2β dimer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!