We formulate a damped oscillating particle method to solve the stationary nonlinear Schrödinger equation (NLSE). The ground-state solutions are found by a converging damped oscillating evolution equation that can be discretized with symplectic numerical techniques. The method is demonstrated for three different cases: for the single-component NLSE with an attractive self-interaction, for the single-component NLSE with a repulsive self-interaction and a constraint on the angular momentum, and for the two-component NLSE with a constraint on the total angular momentum. We reproduce the so-called yrast curve for the single-component case, described in [A. D. Jackson et al., Europhys. Lett. 95, 30002 (2011)], and produce for the first time an analogous curve for the two-component NLSE. The numerical results are compared with analytic solutions and competing numerical methods. Our method is well suited to handle a large class of equations and can easily be adapted to further constraints and components.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.93.033301DOI Listing

Publication Analysis

Top Keywords

angular momentum
12
nonlinear schrödinger
8
schrödinger equation
8
constraint angular
8
damped oscillating
8
single-component nlse
8
two-component nlse
8
nlse
5
numerical
4
numerical solution
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!