The dynamic van der Waals theory [Phys. Rev. E 75, 036304 (2007)] is employed to model the growth of a single vapor bubble in a superheated liquid on a flat homogeneous substrate. The bubble spreading dynamics in the pool boiling regime has been numerically investigated for one-component van der Waals fluids close to the critical point, with a focus on the effect of the substrate wettability on bubble growth and contact line motion. The substrate wettability is found to control the apparent contact angle and the rate of bubble growth (the rate of total evaporation), through which the contact line speed is determined. An approximate expression is derived for the contact line speed, showing good agreement with the simulation results. This demonstrates that the contact line speed is primarily governed by (1) the circular shape of interface (for slow bubble growth), (2) the constant apparent contact angle, and (3) the constant bubble growth rate. It follows that the contact line speed has a sensitive dependence on the substrate wettability via the apparent contact angle which also determines the bubble growth rate. Compared to hydrophilic surfaces, hydrophobic surfaces give rise to a thinner shape of bubble and a higher rate of total evaporation, which combine to result in a much faster contact line speed. This can be linked to the earlier formation of a vapor film and hence the onset of boiling crisis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.93.033105 | DOI Listing |
Foods
January 2025
Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence ceiA3, University of Córdoba, 14014 Córdoba, Spain.
The traditional method is considered the highest-quality sparkling wine making technique. Its main characteristic is that the entire sparkling transformation takes place in the bottle, producing complex, refined wines with fine, persistent bubbles. Currently, the second fermentation in the bottle is initiated by a few commercially available strains of .
View Article and Find Full Text PDFUltrason Sonochem
January 2025
Acoustic droplet vaporization (ADV) plays a crucial role in ultrasound-related biomedical applications. While previous models have examined the stages of nucleation, growth, and oscillation in isolation, which may limit their ability to fully describe the entire ADV process. To address this, our study developed an integrated model that unifies these three stages of ADV, stimulated by a continuous nonlinear dual-frequency ultrasound wave.
View Article and Find Full Text PDFJ Ultrasound Med
January 2025
Department of Radiology, University of Michigan Health System, Ann Arbor, Michigan, USA.
Objective: Focused ultrasound has emerged as a precise and minimally invasive modality for effective cancer treatment. In this study, we propose a novel method that integrates the mechanical effects of focused ultrasound, known as histotripsy, with heating to enhance both the immediate and sustained cytotoxic effects on cancer cells.
Methods: Our investigation focused on VX2 cancer cells in suspension, examining five experimental groups: blank control, negative control, heating alone, histotripsy alone, and histotripsy with subsequent heating.
Small
January 2025
Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
The preparation and modification of porous electrodes are an important component of the new generation electrochemical oxidation technology. Rapid preparation of porous electrodes can be easily achieved by synchronous oxygen bubble electrodeposition. However, according to the reaction mechanism of lead dioxide anodic electrodeposition, there is bound to be a competitive reaction of adsorbed hydroxyl radicals in the oxygen bubble template method, which means that synchronous OER impacts both the surface morphology and potentially the crystalline structure of the metal oxides.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, 1 James Bourchier Avenue, Sofia 1164, Bulgaria.
Spontaneous bubble growths in liquids are usually triggered by rapid changes in pressure or temperature that can lead to liquid gas supersaturation. Here, we report alternative scenarios of the spontaneous growths of bubbles inside a high-saturation-vapor-pressure and high-air-solubility perfluorocarbon liquid (PP1) that were observed under ambient quiescent conditions. First, we investigate spontaneous bubble growth inside the single PP1 phase, which was left to evaporate freely.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!