The H theorem is proven for generalized entropic forms, in the case of a discrete set of states. The associated probability distributions evolve in time according to a master equation, for which the corresponding transition rates depend on these entropic forms. An important equation describing the time evolution of the transition rates and probabilities in such a way as to drive the system towards an equilibrium state is found. In the particular case of Boltzmann-Gibbs entropy, it is shown that this equation is satisfied in the microcanonical ensemble only for symmetric probability transition rates, characterizing a single path to the equilibrium state. This equation fulfils the proof of the H theorem for generalized entropic forms, associated with systems characterized by complex dynamics, e.g., presenting nonsymmetric probability transition rates and more than one path towards the same equilibrium state. Some examples considering generalized entropies of the literature are discussed, showing that they should be applicable to a wide range of natural phenomena, mainly those within the realm of complex systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.93.032145 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!