Ewing sarcoma (ES) is the second most common malignant bone and soft tissue tumor in children and adolescents. Despite advances in comprehensive treatment, patients with ES metastases still suffer poor outcomes, thus, emphasizing the need for detailed genetic profiles of ES patients to identify suitable molecular biomarkers for improved prognosis and development of effective and targeted therapies. In this study, the next generation sequencing Ion AmpliSeq™ Cancer Hotspot Panel v2 was used to identify cancer-related gene mutations in the tissue samples from 20 ES patients. This platform targeted 207 amplicons of 2800 loci in 50 cancer-related genes. Among the 20 tissue specimens, 62 nonsynonymous hotspot mutations were identified in 26 cancer-related genes, revealing the molecular heterogeneity of ES. Among these, five novel mutations in cancer-related genes (KDR, STK11, MLH1, KRAS, and PTPN11) were detected in ES, and these mutations were confirmed with traditional Sanger sequencing. ES patients with KDR, STK11, and MLH1 mutations had higher Ki-67 proliferation indices than the ES patients lacking such mutations. Notably, more than half of the ES patients harbored one or two possible 'druggable' mutations that have been previously linked to a clinical cancer treatment option. Our results provided the foundation to not only elucidate possible mechanisms involved in ES pathogenesis but also indicated the utility of Ion Torrent sequencing as a sensitive and cost-effective tool to screen key oncogenes and tumor suppressors in order to develop personalized therapy for ES patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4831808 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0153546 | PLOS |
BMC Bioinformatics
January 2025
Department of Applied Computer Science, University of Winnipeg, Winnipeg, MB, R3B 2E9, Canada.
Background: Comprehensively mapping the hierarchical structure of breast cancer protein communities and identifying potential biomarkers from them is a promising way for breast cancer research. Existing approaches are subjective and fail to take information from protein sequences into consideration. Deep learning can automatically learn features from protein sequences and protein-protein interactions for hierarchical clustering.
View Article and Find Full Text PDFHereditas
January 2025
Department of Gynaecology and Obstetrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China.
Background: Uterine Corpus Endometrial Carcinoma (UCEC) is a prevalent gynecologic malignancy with complex molecular underpinnings. This study identifies key woundhealing genes involved in UCEC and elucidates their roles through a comprehensive analysis.
Methods: In silico and in vitro experiments.
Cancer Cell Int
January 2025
School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
This narrative review explores the link between breast cancer and night shift work in nurses, focusing on genetic and epigenetic factors. Breast cancer disproportionately affects women globally, and night shift work is increasingly recognized as a potential risk factor. Nurses who work consecutive overnight shifts face elevated risks due to disruptions in their circadian rhythms.
View Article and Find Full Text PDFJ Thorac Dis
December 2024
Department of Thoracic Surgery, The Second Hospital of Dalian Medical University, Dalian, China.
Background: Lung cancer associated with cystic airspaces (LCCA) is a rare occurrence and frequently remains undetected in imaging tests. The diagnosis and treatment of this disease are often delayed due to the lack of comprehension. We aimed to clarify clinicopathological characteristics and investigate the molecular features of LCCA patients.
View Article and Find Full Text PDFDig Dis Sci
January 2025
Ningxia Medical University, Xing Qing Block, Shengli Street No.1160, Yin Chuan City, 750004, Ningxia Province, People's Republic of China.
Background: Colon adenocarcinoma (COAD) is a leading cause of cancer-related mortality worldwide. Transient receptor potential vanilloid 4 (TRPV4), a calcium-permeable non-selective cation channel, has been implicated in various cancers, including COAD. This study investigates the role of TRPV4 in colon adenocarcinoma and elucidates its potential mechanism via the ferroptosis pathway.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!