Both human porphyria cutanea tarda and experimental hexachlorobenzene-induced porphyria are associated with hepatic injury and are potentiated by excess hepatic iron. The mechanisms whereby cellular injury occurs and the synergistic role of iron overload are unknown. In the present experiments, we studied hepatic mitochondrial function and lipid peroxidation in rats with hexachlorobenzene-induced porphyria in which iron loading was achieved by dietary carbonyl iron supplementation. Female rats were treated for 8 weeks, receiving a chow diet supplemented with hexachlorobenzene (0.2%, w/w), carbonyl iron (1.0%, w/w) or hexachlorobenzene + iron. Hepatic total porphyrins were increased 100-fold in rats receiving hexachlorobenzene (hexachlorobenzene alone and hexachlorobenzene + Fe), and total hepatic iron was increased approximately 10-fold in rats receiving iron supplementation (Fe alone and hexachlorobenzene + Fe). There was a significant increase in mitochondrial lipid peroxidation in rats treated with hexachlorobenzene alone and hexachlorobenzene + Fe. A significant reduction in mitochondrial respiratory control ratios and in oxidative phosphorylation (ADP/O ratios) using glutamate and succinate as substrates was demonstrated when rats were treated with hexachlorobenzene + iron. The reductions in respiratory control ratios were due to a combination of an inhibitory defect in electron transport as evidenced by an irreversible decrease in State 3 respiration and an uncoupling effect as evidenced by an increase in State 4 respiration. These findings suggest that lipid peroxidation and mitochondrial dysfunction may contribute to the hepatotoxicity seen in hexachlorobenzene-induced porphyria.

Download full-text PDF

Source
http://dx.doi.org/10.1002/hep.1840090505DOI Listing

Publication Analysis

Top Keywords

lipid peroxidation
16
hexachlorobenzene-induced porphyria
16
carbonyl iron
12
rats treated
12
hexachlorobenzene hexachlorobenzene
12
iron
10
hexachlorobenzene
9
hepatic mitochondrial
8
experimental hexachlorobenzene-induced
8
dietary carbonyl
8

Similar Publications

It has been well documented that cold is an enhancer of lipid metabolism in peripheral tissues, yet its effect on central nervous system lipid dynamics is underexplored. It is well recognized that cold acclimations enhance adipocyte functions, including white adipose tissue lipid lipolysis and beiging, and brown adipose tissue thermogenesis in mammals. However, it remains unclear whether and how lipid metabolism in the brain is also under the control of ambient temperature.

View Article and Find Full Text PDF

Dyslipidemia is a prominent pathological feature responsible for oxidative stress-induced cardiac damage. Due to their high antioxidant content, dietary compounds, such as aspalathin and sulforaphane, are increasingly explored for their cardioprotective effects against lipid-induced toxicity. Cultured H9c2 cardiomyoblasts, an in vitro model routinely used to assess the pharmacological effect of drugs, were pretreated with the dietary compounds, aspalathin (1 μM) and sulforaphane (10 μM) before exposure to palmitic acid (0.

View Article and Find Full Text PDF

Redox biomarker levels in patients with myelodysplastic syndrome.

Biomed Rep

March 2025

Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, Larissa 41500, Greece.

Myelodysplastic syndrome (MDS) is a heterogeneous clonal disorder characterized by insufficient hematopoiesis, peripheral blood cytopenia and an increased risk for malignant transformation to acute myeloid leukemia. Several factors, such as age, sex and lifestyle, promote the development of MDS syndrome. Oxidative stress, along with its detrimental effects, cause hematological disorders; however, its role in the pathogenesis of MDS is unknown.

View Article and Find Full Text PDF

Introduction: Oxyresveratrol (ORes) exhibits significant anticancer activity, particularly against breast cancer. However, its exact mechanism of action (MOA) remains unclear. This study aimed to investigate the pharmacological activity and underlying MOA.

View Article and Find Full Text PDF

Effect of halo-tolerance gene Hal5 on ethanol tolerance of .

BBA Adv

October 2024

Department of Biochemistry, Panjab University, Chandigarh 160014, India.

Hal5 gene is involved in halo-tolerance of during high salt stress. Ethanol stress and high salt stress have similarities, as both decrease the availability of water for cells and strain the osmotic homeostasis across the cell membrane. The Hal5 over-expression strain of yeast has more ethanol tolerance, but the Hal5 null mutant strain also has more ethanol tolerance than the wild-type strain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!