Long non-coding RNAs (lncRNAs) are a class of RNA molecules that are changing how researchers view eukaryotic gene regulation. Once considered to be non-functional products of low-level aberrant transcription from non-coding regions of the genome, lncRNAs are now viewed as important epigenetic regulators and several lncRNAs have now been demonstrated to be critical players in the development and/or maintenance of cancer. Similarly, the emerging variety of interactions between lncRNAs and MYC, a well-known oncogenic transcription factor linked to most types of cancer, have caught the attention of many biomedical researchers. Investigations exploring the dynamic interactions between lncRNAs and MYC, referred to as the lncRNA-MYC network, have proven to be especially complex. Genome-wide studies have shown that MYC transcriptionally regulates many lncRNA genes. Conversely, recent reports identified lncRNAs that regulate MYC expression both at the transcriptional and post-transcriptional levels. These findings are of particular interest because they suggest roles of lncRNAs as regulators of MYC oncogenic functions and the possibility that targeting lncRNAs could represent a novel avenue to cancer treatment. Here, we briefly review the current understanding of how lncRNAs regulate chromatin structure and gene transcription, and then focus on the new developments in the emerging field exploring the lncRNA-MYC network in cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4827443 | PMC |
http://dx.doi.org/10.3934/biophy.2015.4.794 | DOI Listing |
Sci Adv
January 2025
Department of Biostatistics and Health Data Science, School of Medicine, Indiana University, Indianapolis, IN 46202, USA.
Alzheimer's disease (AD) is the leading dementia among the elderly with complex origins. Despite extensive investigation into the AD-associated protein-coding genes, the involvement of noncoding RNAs (ncRNAs) and posttranscriptional modification (PTM) in AD pathogenesis remains unclear. Here, we comprehensively characterized the landscape of ncRNAs and PTM events in 1460 samples across six brain regions sourced from the Mount Sinai/JJ Peters VA Medical Center Brain Bank Study and Mayo cohorts, encompassing 33,321 long ncRNAs, 92,897 enhancer RNAs, 53,763 alternative polyadenylation events, and 900,221 A-to-I RNA editing events.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.
Background: Compelling evidence has shown that long non-coding RNAs (lncRNAs) contribute to Alzheimer's disease (AD) pathogenesis including β-amyloid plaque deposition (Aβ) and intracellular neurofibrillary tangles. In this study, we aimed to investigate the critical role of lncRNA Gm20063 in AD.
Method: Six-month-old male APP/PS1 transgenic mice and wild type (WT) C57BL/6 (B6) littermates were obtained from the Nanjing University Animal Model Research Center.
Alzheimers Dement
December 2024
Sunnybrook Health Sciences Centre, Toronto, ON, Canada.
Background: White matter hyperintensities (WMH) are commonly observed on MRI in Alzheimer's disease (AD), but the molecular pathways underlying their relationships with the ATN biomarkers remain unclear. The aim of this study was to identify genetic variants that may modify the relationship between WMH and the ATN biomarkers.
Method: This genome-wide interaction study (GWIS) included individuals with AD, MCI, and normal cognition from ADNI (n = 1012).
Hum Cell
January 2025
Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, No. 126 Sendai Street, Nanguan District, Changchun, 130031, China.
Imatinib resistance is a major obstacle to the successful treatment of gastrointestinal stromal tumors (GIST). Long non-coding RNAs (LncRNAs) have been identified as important regulatory factors in chemotherapy resistance. This study aimed to identify key lncRNAs involved in imatinib resistance of GISTs.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Stanford University, Stanford, CA, USA.
Background: APOE*4 is the strongest genetic risk for late-onset Alzheimer's disease (AD), but other genetic loci may counter its detrimental effect, providing therapeutic avenues. Expanding beyond non-Hispanic White subjects, we sought to additionally leverage genetic data from non-Hispanic and Hispanic subjects of admixed African ancestry to perform trans-ancestry APOE*4-stratified GWAS, anticipating that allele frequency differences across populations would boost power for gene discovery.
Method: Participants were ages 60+, of European (EU; ≥75%) or admixed African (AFR; ≥25%) ancestry, and diagnosed as cases or controls.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!