We provide the dataset of the vacancy (interstitial) formation energy, segregation energy, diffusion barrier, vacancy-interstitial annihilation barrier near the grain boundary (GB) in bcc-iron and also the corresponding interactive range. The vacancy-interstitial annihilation mechanisms in the bulk, near the GB and at the GB at across scales were given.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4816880PMC
http://dx.doi.org/10.1016/j.dib.2016.03.052DOI Listing

Publication Analysis

Top Keywords

grain boundary
8
vacancy-interstitial annihilation
8
energetic kinetic
4
kinetic dataset
4
dataset interaction
4
interaction vacancy
4
vacancy self-interstitial
4
self-interstitial atom
4
atom grain
4
boundary α-iron
4

Similar Publications

Lattice thermal conductivity and phonon properties of polycrystalline graphene.

Nanoscale Adv

December 2024

Department of Mechanical Engineering, IIT Bombay Mumbai Maharashtra India 400076

Using the spectral energy density method, we predict the phonon scattering mean lifetimes of polycrystalline graphene (PC-G) having polycrystallinity only along the -axis with seven different misorientation (tilt) angles at room temperature. Contrary to other studies on PC-G samples, our results indicate a strong dependence of the thermal conductivity (TC) on the tilt angles which we attribute to careful preparation of our grain boundaries-based samples without introducing any local strains and ensuring periodic boundary conditions for the supercells along the and axes. We also show that the square of the group velocity components along and axes and the phonon lifetimes are uncorrelated and the phonon density of states are almost the same for all samples with different tilt angles.

View Article and Find Full Text PDF
Article Synopsis
  • The study focused on dissimilar laser welding of AISI 1060 carbon steel and Duplex Stainless Steel 2205, using both experimental and numerical methods to analyze the impact of welding parameters.
  • The increase in laser power significantly influenced the melt pool depth, which rose from 0.4 mm to 1.4 mm when power was ramped up from 250 to 450 W, and the resultant microstructure varied between the two materials with distinct solidification patterns.
  • Tensile test results indicated that the carbon steel side exhibited brittle fracture, while the Duplex Stainless Steel showed a ductile fracture, highlighting the differing mechanical properties due to their respective microstructures and the transition towards ductility with increased laser energy density.
View Article and Find Full Text PDF

This paper presents the preparation of the parental experimental alloy, featuring a standard composition of TiYZrFeNiMn, via the vacuum induction melting technique. Subsequently, the TiYZrFeNiMn alloy, with an addition of 2 wt% Ni, underwent mechanical ball milling to yield a TiFe-based composite for experimental purposes. The results of the experimental tests indicate that the composite alloy's phase composition comprises the TiFe primary phase, with a minor quantity of ZrMn phase segregated on the surface of the primary TiFe phase, as well as Ni phase.

View Article and Find Full Text PDF

Plasma-Enhanced Grain Growth and Non-Radiative Recombination Mitigation in CsSnBr Perovskite Films for High-Performance, Lead-Free Photodetectors.

Small

January 2025

Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China.

Tin-based halide perovskites represent a highly promising and eco-friendly alternative to lead-based materials with significant potential for optoelectronic applications. However, their advancement is hampered by challenges such as poor film crystallinity and unintended self-doping. Herein, this work reports the fabrication of high-quality CsSnBr perovskite films by plasma-assisted chemical vapor deposition (PACVD), which improves the film quality.

View Article and Find Full Text PDF

The utilization of single crystals is exponentially growing in optoelectronic devices due to their exceptional benefits, including high phase purity and the absence of grain boundaries. However, achieving single crystals with a porous structure poses significant challenges. In this study, we present a method for fabricating porous single crystals (porous-SC) of CsAgBiBr and related halide double perovskites using an infrared-assisted spin coating technique.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!