Less than 30% of multidrug-resistant tuberculosis (MDR-TB) patients are currently diagnosed, due to laboratory constraints. Molecular diagnostics enable rapid and simplified diagnosis. Newer-version line probe assays have not been evaluated against the WHO-endorsed Hain GenoType MTBDRplus (referred to as Hain version 1 [V1]) for the rapid detection of rifampin (RIF) and isoniazid (INH) resistance. A two-phase noninferiority study was conducted in two supranational reference laboratories to allow head-to-head comparisons of two new tests, Hain Genotype MTBDRplus version 2 (referred to as Hain version 2 [V2]) and Nipro NTM+MDRTB detection kit 2 (referred to as Nipro), to Hain V1. In phase 1, the results for 379 test strains were compared to a composite reference standard that used phenotypic drug susceptibility testing (DST) and targeted sequencing. In phase 2, the results for 644 sputum samples were compared to a phenotypic DST reference standard alone. Using a challenging set of strains in phase 1, the values for sensitivity and specificity for Hain V1, Hain V2, and Nipro, respectively, were 90.3%/98.5%, 90.3%/98.5%, and 92.0%/98.5% for RIF resistance detection and 89.1%/99.4%, 89.1%/99.4%, and 89.6%/100.0% for INH resistance detection. Testing of sputa in phase 2 yielded values for sensitivity and specificity of 97.1%/97.1%, 98.2%/97.8%, and 96.5%/97.5% for RIF and 94.4%/96.4%, 95.4%/98.8%, and 94.9%/97.6% for INH. Overall, the rates of indeterminate results were low, but there was a higher rate of indeterminate results with Nipro than with Hain V1 and V2 in samples with low smear grades. Noninferiority of Hain V2 and Nipro to Hain V1 was demonstrated for RIF and INH resistance detection in isolates and sputum specimens. These results serve as evidence for WHO policy recommendations on the use of line probe assays, including the Hain V2 and Nipro assays, for MDR-TB detection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4879293 | PMC |
http://dx.doi.org/10.1128/JCM.00251-16 | DOI Listing |
Herzschrittmacherther Elektrophysiol
January 2025
, Bendorf, Deutschland.
Dalton Trans
January 2025
Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
Two Co(II) mixed-ligand metal-organic frameworks (MOFs) based on 2-methylimidazole and trimesate were synthesised at room temperature. The structure and properties of the two MOFs, named material Deutsches Elektronen Synchrotron-1 and -2 (mDESY-1 and mDESY-2), were verified by single crystal X-ray diffraction (SCXRD), powder X-ray diffraction (PXRD), SQUID magnetic susceptibility and N adsorption. The structural analysis indicates that mDESY-1 is a 3D ionic framework with 2-methyl-1-imidazol-3-ium counterions residing in its pores, while mDESY-2 is a 2D neutral framework isostructural to ITH-1, with water as a co-crystallising solvent.
View Article and Find Full Text PDFMucosal Immunol
December 2024
Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK. Electronic address:
Neuro-immune interactions within barrier organs, such as lung, gut, and skin, are crucial in regulating tissue homeostasis, inflammatory responses, and host defence. Our rapidly advancing understanding of peripheral neuroimmunology is transforming the field of barrier tissue immunology, offering a fresh perspective for developing therapies for complex chronic inflammatory disorders affecting barrier organs. However, most studies have primarily examined interactions between the peripheral nervous system and the immune system from a neuron-focused perspective, while glial cells, the nonneuronal cells of the nervous system, have received less attention.
View Article and Find Full Text PDFHerzschrittmacherther Elektrophysiol
December 2024
, Bendorf, Deutschland.
S Afr J Infect Dis
November 2024
Department of Pathology, Faculty of Health Sciences, School of Medicine, University of Limpopo, Polokwane, South Africa.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!