A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Computational Modeling of Spatiotemporal Ca(2+) Signal Propagation Along Hepatocyte Cords. | LitMetric

Objective: The purpose of this study is to model the dynamics of lobular Ca(2+) wave propagation induced by an extracellular stimulus, and to analyze the effect of spatially systematic variations in cell-intrinsic signaling parameters on sinusoidal Ca(2+) response.

Methods: We developed a computational model of lobular scale Ca(2+) signaling that accounts for receptor- mediated initiation of cell-intrinsic Ca(2+) signal in hepatocytes and its propagation to neighboring hepatocytes through gap junction-mediated molecular exchange.

Results: Analysis of the simulations showed that a pericentral-to-periportal spatial gradient in hormone sensitivity and/or rates of IP3 synthesis underlies the Ca(2+) wave propagation. We simulated specific cases corresponding to localized disruptions in the graded pattern of these parameters along a hepatic sinusoid. Simulations incorporating locally altered parameters exhibited Ca(2+) waves that do not propagate throughout the hepatic plate. Increased gap junction coupling restored normal Ca(2+) wave propagation when hepatocytes with low Ca(2+) signaling ability were localized in the midlobular or the pericentral region.

Conclusion: Multiple spatial patterns in intracellular signaling parameters can lead to Ca(2+) wave propagation that is consistent with the experimentally observed spatial patterns of Ca(2+) dynamics. Based on simulations and analysis, we predict that increased gap junction-mediated intercellular coupling can induce robust Ca(2+) signals in otherwise poorly responsive hepatocytes, at least partly restoring the sinusoidally oriented Ca (2+) waves.

Significance: Our bottom-up model of agonist-evoked spatial Ca(2+) patterns can be integrated with detailed descriptions of liver histology to study Ca(2+) regulation at the tissue level.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5035187PMC
http://dx.doi.org/10.1109/TBME.2016.2550045DOI Listing

Publication Analysis

Top Keywords

ca2+ wave
16
wave propagation
16
ca2+
14
ca2+ signal
8
signaling parameters
8
ca2+ signaling
8
gap junction-mediated
8
increased gap
8
spatial patterns
8
propagation
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!