Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11745-016-4152-y | DOI Listing |
PLoS One
January 2025
Computational Media Lab, University of Texas at Austin, Austin, Texas, United States of America.
Instead of turning to emergency phone systems, social media platforms, such as Twitter, have emerged as alternative and sometimes preferred venues for members of the public in the US to communicate during hurricanes and other natural disasters. However, relevant posts are likely to be missed by responders given the volume of content on platforms. Previous work successfully identified relevant posts through machine-learned methods, but depended on human annotators.
View Article and Find Full Text PDFBiomimetics (Basel)
January 2025
Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China.
With the advancement of the Internet, social media platforms have gradually become powerful in spreading crisis-related content. Identifying informative tweets associated with natural disasters is beneficial for the rescue operation. When faced with massive text data, choosing the pivotal features, reducing the calculation expense, and increasing the model classification performance is a significant challenge.
View Article and Find Full Text PDFCureus
December 2024
Department of Civil Engineering, Mepco Schlenk Engineering College, Sivakasi, IND.
Background Understanding the attitudes and perceptions of the general population is necessary for organizing health promotion initiatives. During outbreaks, social media has a significant impact on creating social perceptions. This study aims to identify and examine the emotions expressed and topics of discussion among Indian citizens related to COVID-19 third wave, from the messages posted on Twitter using text mining techniques.
View Article and Find Full Text PDFFront Res Metr Anal
January 2025
Centre for Postgraduate Studies, Cape Peninsula University of Technology, Cape Town, South Africa.
Big Data communication researchers have highlighted the need for qualitative analysis of online science conversations to better understand their meaning. However, a scholarly gap exists in exploring how qualitative methods can be applied to small data regarding micro-bloggers' communications about science articles. While social media attention assists with article dissemination, qualitative research into the associated microblogging practices remains limited.
View Article and Find Full Text PDFBMJ Health Care Inform
January 2025
Hamad Bin Khalifa University College of Science and Engineering, Doha, Qatar.
Background: Loneliness and insomnia are mutually occurring conditions. This paper investigates whether keywords depicting loneliness and insomnia are expressed together on social media. Understanding loneliness through data fills the gaps or validates the literature on loneliness from sociological and psychological perspectives.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!