Placental vascular dysfunction has been linked to insufficiency/deficiency of maternal vitamin D levels during pregnancy. In contrast, sufficient maternal vitamin D levels have shown beneficial effects on pregnancy outcomes. To study the role of vitamin D in pregnancy, we tested our hypothesis that vitamin D exerts beneficial effects on placental vasculature. We examined expression of CYP2R1, CYP27B1, vitamin D receptor (VDR), and CYP24A1 in placental vascular smooth muscle cells (VSMCs) in response to 1,25(OH)2D3 We found that VDR expression was inducible, CYP27B1 expression was dose-dependently down-regulated, and CYP24A1 expression was dose-dependently up-regulated in cells treated with 1,25(OH)2D3 These data suggest a feedback autoregulatory system of vitamin D existing in placental VSMCs. Using a VSMC/collagen-gel contraction assay, we evaluated the effect of 1,25(OH)2D3 on placental VSMC contractility. We found that, similar to losartan, 1,25(OH)2D3 could diminish angiotensin II-induced cell contractility. The mechanism of 1,25(OH)2D3-mediated VSMC relaxation was further explored by examination of Rho-associated protein kinase 1 (ROCK1)/phosphorylation of myosin phosphatase target subunit 1 (MYPT1) pathway molecules. Our results showed that p-MYPT1(Thr853) and p-MYPT1(Thr696) were undetectable. However, p-MYPT1(Ser507), but not p-MYPT1(Ser668), was significantly up-regulated in cells treated with losartan plus angiotensin II. Similar effects were also seen in cells treated with 1,25(OH)2D3 plus angiotensin II or 1,25(OH)2D3 plus losartan plus angiotensin II. Because MYPT1 serine phosphorylation could activate myosin light chain phosphatase (MLCP), and MLCP activation is an important regulatory machinery of smooth muscle cell relaxation, up-regulation of MYPT1(Ser507) phosphorylation could be a mechanism of vitamin D and/or losartan mediated placental VSMC relaxation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4939743PMC
http://dx.doi.org/10.1095/biolreprod.116.138362DOI Listing

Publication Analysis

Top Keywords

placental vascular
12
smooth muscle
12
beneficial effects
12
cells treated
12
placental
8
vascular smooth
8
muscle cell
8
cell relaxation
8
myosin phosphatase
8
phosphatase target
8

Similar Publications

Can maternal serum soluble fms-like tyrosine kinase-1 to placental growth factor levels at term anticipate adverse pregnancy outcomes?

J Obstet Gynaecol Res

January 2025

Pregnancy Research Centre, Department of Maternal Fetal Medicine, the Royal Women's Hospital, Parkville, Victoria, Australia.

Aim: To evaluate if maternal serum soluble fms-like tyrosine kinase-1(sFlt-1) to placental growth factor (PlGF) ratio levels at term can anticipate the following adverse pregnancy outcomes: small for gestational age neonates; operative delivery for suspected fetal welfare compromise; and neonatal compromise.

Methods: A retrospective analysis of a single hospital database containing antenatal soluble fms-like tyrosine kinase-1 to placental growth factor (sFlt-1/PlGF) ratio results together with associated demographic, clinical and investigative information. Subjects with antenatal sFlt-1/PlGF measurements taken ≥37 weeks' gestation were analyzed.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is a prevalent neurodevelopmental condition affecting a substantial number of children globally, characterized by diverse aetiologies, including genetic and environmental factors. Emerging research suggests that neurovascular dysregulation during development could significantly contribute to autism. This review synthesizes the potential role of vascular abnormalities in the pathogenesis of ASD and explores insights from studies on valproic acid (VPA) exposure during neural tube development.

View Article and Find Full Text PDF

Effects of hypoxia on uteroplacental and fetoplacental vascular function during pregnancy.

Front Physiol

December 2024

Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.

During pregnancy, marked changes in vasculature occur. The placenta is developed, and uteroplacental and fetoplacental circulations are established. These processes may be negatively affected by genetic anomalies, maternal environment (i.

View Article and Find Full Text PDF

The spleen in ischaemic heart disease.

Nat Rev Cardiol

January 2025

Institute for Pathophysiology, West German Heart and Vascular Center, University of Duisburg-Essen, Essen, Germany.

Article Synopsis
  • Ischaemic heart disease results from coronary atherosclerosis, which is linked to systemic inflammation involving various immune cells released by the spleen.
  • Prolonged inflammation can lead to ischaemic heart failure, while the spleen's interaction with the nervous system can modulate immune responses and protect the heart from damage.
  • Splenectomy, which removes the spleen, increases mortality risk from ischaemic heart disease, highlighting the spleen's crucial role in immune responses and cardiovascular protection.
View Article and Find Full Text PDF

Distinct phenotypes in the preeclamptic-like mouse model induced by adenovirus carrying sFlt1 and recombinant sFlt1 protein.

Eur J Med Res

December 2024

Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.

Background: Preeclampsia (PE) is a pregnancy-specific, multisystemic disorder that affects 2-8% pregnancies worldwide and is a leading cause of maternal and perinatal mortality. At present, there is no cure for PE apart from delivery the placenta. Therefore, it is important and urgent to possess a suitable animal model to study the pathology and treatment of PE.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!